Cho hàm số y = ax^2 (a ≠ 0). Tìm a để đồ thị hàm số đi qua điểm M(2; 2)

52

Với giải Bài 10 trang 22 Toán 9 Tập 2 Chân trời sáng tạo chi tiết trong Bài tập cuối chương 6 giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 9. Mời các bạn đón xem:

Giải bài tập Toán 9 Bài tập cuối chương 6

Bài 10 trang 22 Toán 9 Tập 2: Cho hàm số y = ax2 (a ≠ 0)

a) Tìm a để đồ thị hàm số đi qua điểm M(2; 2).

b) Vẽ đồ thị (P) của hàm số với a vừa tìm được.

c) Tìm các điểm thuộc đồ thị (P) có tung độ y = 8.

Lời giải:

a) Thay x = 2; y = 2 vào hàm số y = ax2 (a ≠ 0), ta được: 2 = a . 22 suy ra a=12 .

b) Từ câu a, ta có a=12 nên đồ thị hàm số cần tìm là y=12x2 .

Ta có bảng giá trị:

Bài 10 trang 22 Toán 9 Tập 2 Chân trời sáng tạo | Giải Toán 9

Trên mặt phẳng tọa độ, lấy các điểm A2;  2,  B1;  12  ,  O0;  0,  B'1;  12,  A'2;  2.

Đồ thị hàm số y=12x2 là một đường parabol đỉnh O, đi qua các điểm trên và có dạng như dưới đây.

Bài 10 trang 22 Toán 9 Tập 2 Chân trời sáng tạo | Giải Toán 9

c) Thay y = 8 vào y=12x2, ta được:

8=12x2

x2 = 16

x = ±4.

Vậy có hai điểm thuộc đồ thị là: (−4; 8), (4; 8).

Đánh giá

0

0 đánh giá