Biết rằng đường cong trong Hình 6.6 là một parabol y = ax^2

178

Với giải Bài 6.5 trang 8 Toán 9 Tập 2 Kết nối tri thức chi tiết trong Bài 18: Hàm số y = ax^2 (a ≠ 0) giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 9. Mời các bạn đón xem: 

Giải bài tập Toán 9 Bài 18: Hàm số y = ax^2 (a ≠ 0)

Bài 6.5 trang 8 Toán 9 Tập 2: Biết rằng đường cong trong Hình 6.6 là một parabol y = ax2.

a) Tìm hệ số a.

b) Tìm tung độ của điểm thuộc parabol có hoành độ x = –2.

c) Tìm các điểm thuộc parabol có tung độ y = 8.

Bài 6.5 trang 8 Toán 9 Kết nối tri thức Tập 2 | Giải Toán 9

Lời giải:

a) Do parabol y = ax2 trong Hình 6.6 đi qua điểm có tọa độ (2; 2) nên ta thay x = 2 và y = 2 vào hàm số y = ax2 thì được:

2 = a . 22, hay 4a = 2. Suy ra a = 12.

b) Trên Hình 6.6, ta thấy parabol đi qua điểm có tọa độ (–2; 2).

Vậy điểm thuộc parabol có hoành độ x = –2 thì có tung độ là 2.

c) Với a = 12 ta có hàm số y=12x2.

Thay y = 8 vào hàm số trên, ta được: 8=12x2, hay x2 = 16.

Suy ra x = 4 hoặc x = –4.

Vậy các điểm thuộc parabol cần tìm là (–4; 8) và (4; 8).

Đánh giá

0

0 đánh giá