Tailieumoi.vn giới thiệu Giải bài tập Toán lớp 9 Bài 20: Định lí Viète và ứng dụng chi tiết sách Toán 9 Tập 2 Kết nối tri thức giúp học sinh xem và so sánh lời giải từ đó biết cách làm bài tập môn Toán 9. Mời các bạn đón xem:
Giải bài tập Toán 9 Bài 20: Định lí Viète và ứng dụng
Lời giải:
Sau bài học này, chúng ta sẽ giải quyết được bài toán trên như sau:
Gọi hai kích thước của mảnh vườn hình chữ nhật là x1; x2 (m).
Ta có nửa chu vi và diện tích mảnh vườn hình chữ nhật lần lượt là x1 + x2 (m) và x1x2 (m2).
Theo bài, hàng rào 40 m rào xung quanh mảnh vườn nên nửa chu vi mảnh vườn là 40 : 2 = 20 (m), do đó x1 + x2 = 20.
Diện tích mảnh vườn hình chữ nhật là 96 m2, do đó x1x2 = 96.
Khi đó, x1 và x2 là hai nghiệm của phương trình: x2 – 20x + 96 = 0.
Ta có ∆’ = (–10)2 – 1.96 = 4 > 0 và
Do đó phương trình có hai nghiệm là:
Vậy chiều dài và chiều rộng của mảnh vườn đó lần lượt là 12 (m) và 8 (m) (do chiều dài luôn lớn hơn chiều rộng).
1. Định lí Viète
Nhắc lại công thức tính hai nghiệm x1, x2 của phương trình trên.
Lời giải:
Xét phương trình bậc hai ax2 + bx + c = 0 (a ≠ 0).
⦁ Nếu ∆ > 0 thì phương trình có hai nghiệm phân biệt:
⦁ Nếu ∆ = 0 thì phương trình có nghiệm kép:
HĐ2 trang 21 Toán 9 Tập 2: Từ kết quả HĐ1, hãy tính x1 + x2 và x1x2.
Lời giải:
Ta có:
⦁
⦁
a) 2x2 – 7x + 3 = 0;
b) 25x2 – 20x + 4 = 0;
c)
Lời giải:
a) 2x2 – 7x + 3 = 0
Ta có ∆ = (–7)2 – 4.2.3 = 25 > 0 nên phương trình có hai nghiệm phân biệt x1, x2.
Theo định lí Viète, ta có:
b) 25x2 – 20x + 4 = 0
Ta có ∆’ = (–10)2 – 25.4 = 0 nên phương trình có hai nghiệm trùng nhau x1, x2.
Theo định lí Viète, ta có:
c)
Ta có nên phương trình có hai nghiệm phân biệt x1, x2.
Theo định lí Viète, ta có:
Ý kiến của em thế nào?
Lời giải:
Ta có ∆ = (–1)2 – 4.1.1 = –3 < 0 nên phương trình vô nghiệm.
Do đó, không tính được tổng và tích các nghiệm của phương trình x2 – x + 1 = 0.
Vậy bạn Tròn nói sai.
2. Áp dụng định lí Viète để tính nhẩm nghiệm
HĐ3 trang 22 Toán 9 Tập 2: Cho phương trình 2x2 – 7x + 5 = 0.
a) Xác định các hệ số a, b, c rồi tính a + b + c.
b) Chứng tỏ rằng x1 = 1 là một nghiệm của phương trình.
c) Dùng định lí Viète để tìm nghiệm còn lại x2 của phương trình.
Lời giải:
a) Ta có a = 2, b = –7, c = 5 và a + b + c = 2 + (–7) + 5 = 0.
b) Thay x1 = 1 vào phương trình 2x2 – 7x + 5 = 0, ta được:
2.12 – 7.1 + 5 = 0 (đúng).
Vậy x1 = 1 là một nghiệm của phương trình 2x2 – 7x + 5 = 0.
c) Theo định lí Viète, ta có:
Hay suy ra
Vậy
HĐ4 trang 22 Toán 9 Tập 2: Cho phương trình 3x2 + 5x + 2 = 0.
a) Xác định các hệ số a, b, c rồi tính a – b + c.
b) Chứng tỏ rằng x1 = –1 là một nghiệm của phương trình.
c) Dùng định lí Viète để tìm nghiệm còn lại x2 của phương trình.
Lời giải:
a) Ta có a = 3, b = 5, c = 2 và a – b + c = 3 – 5 + 2 = 0.
b) Thay x1 = –1 vào phương trình 3x2 + 5x + 2 = 0, ta được:
3.(–1)2 + 5.(–1) + 2 = 0 (đúng).
Vậy x1 = –1 là một nghiệm của phương trình 3x2 + 5x + 2 = 0.
c) Theo định lí Viète, ta có:
Hay suy ra
Vậy
Luyện tập 2 trang 23 Toán 9 Tập 2: Tính nhẩm nghiệm của các phương trình sau:
a) 3x2 – 11x + 8 = 0;
b) 4x2 + 15x + 11 = 0;
c) biết phương trình có một nghiệm là
Lời giải:
a) Ta có a + b + c = 3 + (–11) + 8 = 0 nên phương trình có hai nghiệm x1 = 1,
b) Ta có a – b + c = 4 – 15 + 11 = 0 nên phương trình có hai nghiệm x1 = –1,
c) Giả sử phương trình có một nghiệm và nghiệm còn lại là x2.
Theo định lí Viète, ta có: x1x2 = 2.
Do đó
Vậy phương trình có hai nghiệm
Tròn trả lời: “Tớ tìm ra rồi! Đó là phương trình x2 + x + 1 = 0”.
Em có đồng ý với ý kiến của Tròn không? Vì sao?
Lời giải:
Xét phương trình x2 + x + 1 = 0 có ∆ = 12 – 4.1.1 = –3 < 0.
Do đó phương trình trên vô nghiệm.
Vậy em không đồng ý với ý kiến của Tròn.
3. Tìm hai số khi biết tổng và tích của chúng
a) Gọi một số là x. Tính số kia theo x.
b) Sử dụng kết quả câu a và giả thiết, hãy lập phương trình để tìm x.
Lời giải:
a) Số còn lại là 5 – x.
b) Tích của hai số x và 5 – x là: x(5 – x).
Theo bài, ta có:
x(5 – x) = 6
5x – x2 = 6
x2 – 5x + 6 = 0.
Ta có ∆ = (–5)2 – 4.1.6 = 1 > 0.
Do đó phương trình có hai nghiệm phân biệt:
Luyện tập 3 trang 24 Toán 9 Tập 2: Tìm hai số biết tổng của chúng bằng –11, tích của chúng bằng 28.
Lời giải:
Hai số cần tìm là hai nghiệm của phương trình x2 + 11x + 28 = 0.
Ta có ∆ = 112 – 4.1.28 = 9 > 0 và
Suy ra phương trình có hai nghiệm
Vậy hai số cần tìm là –4 và –7.
Vận dụng trang 24 Toán 9 Tập 2: Giải bài toán trong tình huống mở đầu.
Lời giải:
Gọi hai kích thước của mảnh vườn hình chữ nhật là x1; x2 (m).
Ta có nửa chu vi và diện tích mảnh vườn hình chữ nhật lần lượt là x1 + x2 (m) và x1x2 (m2).
Theo bài, hàng rào 40 m rào xung quanh mảnh vườn nên nửa chu vi mảnh vườn là 40 : 2 = 20 (m), do đó x1 + x2 = 20.
Diện tích mảnh vườn hình chữ nhật là 96 m2, do đó x1x2 = 96.
Khi đó, x1 và x2 là hai nghiệm của phương trình: x2 – 20x + 96 = 0.
Ta có ∆’ = (–10)2 – 1.96 = 4 > 0 và
Do đó phương trình có hai nghiệm là:
Vậy chiều dài và chiều rộng của mảnh vườn đó lần lượt là 12 (m) và 8 (m) (do chiều dài luôn lớn hơn chiều rộng).
Bài tập
а) x2 – 12x + 8 = 0;
b) 2x2 + 11x – 5 =0;
c) 3x2 – 10 = 0;
d) x2 – x + 3 = 0.
Lời giải:
a) x2 – 12x + 8 = 0.
Ta có: ∆’ = (–6)2 – 1.8 = 28 > 0 nên phương trình có hai nghiệm phân biệt x1, x2.
Theo định lí Viète, ta có:
x1 + x2 = 12; x1x2 = 8.
b) 2x2 + 11x – 5 =0.
Ta có: ∆ = 112 – 4.2.(–5) = 161 > 0 nên phương trình có hai nghiệm phân biệt x1, x2.
Theo định lí Viète, ta có:
c) 3x2 – 10 = 0.
Ta có: ∆’ = 02 – 3.(–10) = 30 > 0 nên phương trình có hai nghiệm phân biệt x1, x2.
Theo định lí Viète, ta có:
d) x2 – x + 3 = 0.
Ta có: ∆ = (–1)2 – 4.1.3 = –11 < 0 nên phương trình vô nghiệm.
Bài 6.24 trang 24 Toán 9 Tập 2: Tính nhẩm nghiệm của các phương trình sau:
а) 2x2 – 9x + 7 = 0;
b) 3x2 + 11x + 8 = 0;
c) 7x2 – 15x + 2 = 0, biết phương trình có một nghiệm x1 = 2.
Lời giải:
a) Ta có: a + b + c = 2 + (–9) + 7 = 0 nên phương trình có hai nghiệm: x1 = 1;
b) Ta có: a – b + c = 3 – 11 + 8 = 0 nên phương trình có hai nghiệm: x1 = –1;
c) Gọi x2 là nghiệm còn lại của phương trình.
Theo định lí Viète, ta có:
Do đó
Vậy phương trình có hai nghiệm là x1 = 2 và
Bài 6.25 trang 24 Toán 9 Tập 2: Tìm hai số u và v, biết:
a) u + v = 20, uv = 99;
b) u + v = 2, uv = 15.
Lời giải:
a) Vì u + v = 20, uv = 99 nên u và v là hai nghiệm của phương trình x2 – 20x + 99 = 0.
Ta có ∆’ = (–10)2 – 1.99 = 1 > 0 và
Suy ra phương trình có hai nghiệm
Vậy u = 11; v = 9 hoặc u = 9; v = 11.
b) Vì u + v = 2, uv = 15 nên u và v là hai nghiệm của phương trình x2 – 2x + 15 = 0.
Ta có ∆’ = (–1)2 – 1.15 = –14 < 0 nên phương trình trên vô nghiệm.
Vậy không có số u và v nào thỏa mãn yêu cầu đề bài.
ax2 + bx + c = a(x – x1)(x – x2).
Áp dụng: Phân tích các đa thức sau thành nhân tử:
a) x2 + 11x + 18;
b) 3x2 + 5x – 2.
Lời giải:
⦁ Phương trình ax2 + bx + c = 0 có hai nghiệm là x1 và x2 nên theo định lí Viète, ta có:
và
Suy ra b = –a(x1 + x2) và c = ax1x2.
Do đó:
ax2 + bx + c = ax2 – a(x1 + x2)x + ax1x2
= ax2 – ax1x – ax2x + ax1x2
= ax(x – x1) – ax2(x – x1)
= a(x – x1)(x – x2).
Vậy nếu phương trình ax2 + bx + c = 0 có hai nghiệm là x1 và x2 thì đa thức ax2 + bx + c phân tích được thành nhân tử là: ax2 + bx + c = a(x – x1)(x – x2).
⦁ Áp dụng: Phân tích các đa thức thành nhân tử:
a) x2 + 11x + 18.
Phương trình x2 + 11x + 18 = 0 có ∆ = 112 – 4.1.18 = 49 > 0 và
Do đó phương trình có hai nghiệm phân biệt là:
Vậy đa thức x2 + 11x + 18 phân tích được thành nhân tử như sau:
x2 + 11x + 18 = (x + 2)(x + 9).
b) 3x2 + 5x – 2.
Phương trình 3x2 + 5x – 2 = 0 có ∆ = 52 – 4.3.(–2) = 49 > 0 và
Do đó phương trình có hai nghiệm phân biệt là:
Vậy đa thức 3x2 + 5x – 2 phân tích được thành nhân tử như sau:
Lời giải:
Gọi hai kích thước của bể bơi hình chữ nhật là x1; x2 (m).
Ta có nửa chu vi và diện tích bể bơi hình chữ nhật lần lượt là x1 + x2 (m) và x1x2 (m2).
Theo bài, bể bơi hình chữ nhật có chu vi 74 m nên nửa chu vi bể bơi hình chữ nhật là 74 : 2 = 37 (m), do đó x1 + x2 = 37.
Diện tích bể bơi hình chữ nhật là 300 m2, do đó x1x2 = 300.
Khi đó, x1 và x2 là hai nghiệm của phương trình: x2 – 37x + 300 = 0.
Ta có ∆ = (–37)2 – 4.1.300 = 169 > 0 và
Suy ra phương trình trên có hai nghiệm phân biệt:
Vậy chiều dài và chiều rộng của bể bơi lần lượt là 25 m và 12 m (do chiều dài luôn lớn hơn chiều rộng).
Xem thêm các bài giải bài tập Toán lớp 9 Kết nối tri thức hay, chi tiết khác:
Bài 20. Định lí Viète và ứng dụng
Bài 21. Giải bài toán bằng cách lập phương trình
Bài 22. Bảng tần số và biểu đồ tần số
Lý thuyết Định lí Viète và ứng dụng
1. Định lí Viète
Nếu x1, x2 là hai nghiệm của phương trình ax2 + bx + c = 0 (a ≠ 0) thì
Ví dụ 1. Không giải phương trình, hãy kiểm tra điều kiện có nghiệm, rồi tính tổng và tích các nghiệm của mỗi phương trình bậc hai sau:
a) 3x2 + 4x – 5 = 0;
b)
Hướng dẫn giải
a) Vì b = 4 nên b’ = 2.
Ta có: ∆’ = b’2 – ac = 22 – 3.(–5) = 19 > 0.
Do đó, phương trình có hai nghiệm phân biệt x1, x2.
Theo định lí Viète, ta có:
b) Ta có:
Do đó, phương trình có hai nghiệm trùng nhau x1, x2.
Theo định lí Viète, ta có:
2. Áp dụng định lí Viète để tính nhẩm nghiệm
Giải phương trình bậc hai khi biết một nghiệm của nó
Xét phương trình ax2 + bx + c = 0 (a ≠ 0).
⦁ Nếu a + b + c = 0 thì phương trình có một nghiệm là x1 = 1, còn nghiệm kia là
⦁ Nếu a – b + c = 0 thì phương trình có một nghiệm là x1 = –1, còn nghiệm kia là
Ví dụ 2. Tính nhẩm nghiệm của các phương trình sau:
a) x2 – 8x + 7 = 0;
b) 5x2 + 2x – 3 = 0;
c) –x2 + 9x – 20 = 0, biết phương trình có hai nghiệm, trong đó có một nghiệm x1 = 4.
Hướng dẫn giải
a) Ta có: a + b + c = 1 – 8 + 7 = 0 nên phương trình có hai nghiệm: x1 = 1,
Vậy phương trình có hai nghiệm là: x1 = 1, x2 = 7.
b) Ta có: a – b + c = 5 – 2 + (–3) = 0 nên phương trình có hai nghiệm: x1 = –1,
Vậy phương trình có hai nghiệm là: x1 = –1,
c) Gọi x2 là nghiệm còn lại của phương trình.
Theo định lí Viète, ta có:
Suy ra x2 = 9 – x1 = 9 – 4 = 5.
Vậy phương trình có hai nghiệm: x1 = 4, x2 = 5.
3. Tìm hai số khi biết tổng và tích của chúng
Thiết lập phương trình bậc hai để tìm hai số khi biết tổng và tích của chúng
Nếu hai số có tổng bằng S và tích bằng P thì hai số đó là hai nghiệm của phương trình bậc hai:
x2 – Sx + P = 0.
Điều kiện để có hai số đó là S2 – 4P ≥ 0.
Ví dụ 3. Tìm hai số, biết tổng và tích của chúng lần lượt bằng 15 và 54.
Hướng dẫn giải
Hai số cần tìm là hai nghiệm của phương trình: x2 – 15x + 54 = 0.
Ta có: ∆ = b2 – 4ac = (–15)2 – 4.1.54 = 9 > 0 và
Suy ra phương trình có hai nghiệm phân biệt:
Vậy hai số cần tìm là 9 và 6.