Giải SGK Toán 9 Bài 21 (Kết nối tri thức): Giải bài toán bằng cách lập phương trình

583

Tailieumoi.vn giới thiệu Giải bài tập Toán lớp 9 Bài 21: Giải bài toán bằng cách lập phương trình chi tiết sách Toán 9 Tập 2 Kết nối tri thức giúp học sinh xem và so sánh lời giải từ đó biết cách làm bài tập môn Toán 9. Mời các bạn đón xem:

Giải bài tập Toán 9 Bài 21: Giải bài toán bằng cách lập phương trình

Mở đầu trang 25 Toán 9 Tập 2: Bác Lan gửi tiết kiệm 100 triệu đồng vào ngân hàng với kì hạn 12 tháng theo thể thức lãi kép. Sau năm thứ nhất, do chưa có nhu cầu sử dụng nên bác Lan không rút tiền ra mà tiếp tục gửi 12 tháng nữa, với lãi suất như cũ. Sau hai năm bác Lan rút tiền ra thì nhận được 118,81 triệu đồng cả vốn lẫn lãi. Hỏi lãi suất gửi tiết kiệm là bao nhiêu?

Lời giải:

Gọi x là lãi suất gửi tiết kiệm của bác Lan (x được cho dưới dạng số thập phân) (x > 0).

Số tiền thu được (cả vốn lẫn lãi) của bác Lan sau kì gửi thứ nhất là:

100(1 + x) (triệu đồng).

Số tiền thu được (cả vốn lẫn lãi) của bác Lan sau kì gửi thứ nhất là:

100(1 + x)(1 + x) = 100(1 + x)2 (triệu đồng).

Theo bài, sau hai năm bác Lan rút tiền ra thì nhận được 118,81 triệu đồng cả vốn lẫn lãi nên ta có phương trình:

100(1 + x)2 = 118,81

(1 + x)2 = 1,1881

1 + x = 1,09 (do x > 0).

x = 0,09.

Vậy lãi suất gửi tiết kiệm là 9%.

HĐ1 trang 25 Toán 9 Tập 2: Xét bài toán ở tình huống mở đầu.

Gọi x là lãi suất gửi tiết kiệm của bác Lan (x được cho dưới dạng số thập phân). Hãy biểu thị số tiền thu được (cả vốn lẫn lãi) của bác Lan sau kì gửi thứ nhất theo x.

Lời giải:

Số tiền thu được (cả vốn lẫn lãi) của bác Lan sau kì gửi thứ nhất là:

100(1 + x) (triệu đồng).

HĐ2 trang 25 Toán 9 Tập 2: Hết kì gửi thứ nhất, bác Lan không rút tiền ra mà tiếp tục gửi tiết kiệm kì thứ hai với lãi suất như cũ. Hãy biểu thị số tiền thu được (cả vốn lẫn lãi) của bác Lan sau kì gửi thứ hai theo x.

Lời giải:

Số tiền thu được (cả vốn lẫn lãi) của bác Lan sau kì gửi thứ nhất là:

100(1 + x)(1 + x) = 100(1 + x)2 (triệu đồng).

HĐ3 trang 25 Toán 9 Tập 2: Dựa vào đề bài, viết phương trình ẩn x thu được và giải phương trình này để tìm x. Từ đó, trả lời câu hỏi trong tình huống mở đầu.

Lời giải:

Theo bài, sau hai năm bác Lan rút tiền ra thì nhận được 118,81 triệu đồng cả vốn lẫn lãi nên ta có phương trình:

100(1 + x)2 = 118,81

(1 + x)2 = 1,1881

1 + x = 1,09 (do x > 0).

x = 0,09.

Vậy lãi suất gửi tiết kiệm là 9%.

Luyện tập trang 27 Toán 9 Tập 2: Một đội xe gồm các xe tải cùng loại, cần phải chở 120 tấn hàng. Tuy nhiên khi làm việc, có hai xe phải điều chuyển đi nơi khác nên mỗi xe phải chở thêm 3 tấn hàng. Hỏi đội xe đó có bao nhiêu chiếc xe tải?

Lời giải:

Gọi x (chiếc) là số xe tải của đội xe (x ∈ ℕ, x > 2).

Số tấn hàng mỗi xe cần chở là: 120x (tấn).

Số xe tải còn lại sau khi điều chuyển hai xe đi nơi khác là: x – 2 (chiếc).

Lúc này, số tấn hàng mỗi xe phải chở là: 120x2 (tấn).

Theo bài, khi làm việc có hai xe phải điều chuyển đi nơi khác nên mỗi xe phải chở thêm 3 tấn hàng nên ta có phương trình:

120x+3=120x2.

Quy đồng mẫu hai vế của phương trình, ta được:

120x2xx2+3xx2xx2=120xxx2.

Nhân cả hai vế của phương trình với x(x – 2) để khử mẫu, ta được phương trình:

120(x – 2) + 3x(x – 2) = 120x

120x – 240 + 3x2 – 6x – 120x = 0

3x2 – 6x – 240 = 0

x2 – 2x – 80 = 0

Ta có ∆’ = (–1)2 – 1.(–80) = 81 > 0 và Δ'=81=9.

Suy ra phương trình trên có hai nghiệm phân biệt:

x1=1+91=10 (thỏa mãn điều kiện); x2=191=8 (loại).

Vậy đội xe đó có 10 chiếc xe tải.

Bài tập

Bài 6.28 trang 27 Toán 9 Tập 2: Một mảnh đất hình chữ nhật có diện tích 360 m2. Nếu tăng chiều rộng 3 m và giảm chiều dài 4 m thì diện tích mảnh đất không đổi. Tìm các kích thước của mảnh đất đó.

Lời giải:

Gọi x (m) là chiều rộng của hình chữ nhật (x > 0).

Chiều dài của hình chữ nhật là 360x (m).

Chiều rộng tăng 3 m nên chiều rộng sau tăng là: x + 3 (m).

Chiều dài giảm 4 m nên chiều dài sau giảm là: 360x4 (m).

Theo bài, sau khi thay đổi kích thước thì diện tích mảnh đất không đổi, nên ta có phương trình:

x+3360x4=360

3604x+1080x12360=0

4x+1080x12=0.

Quy đồng mẫu vế trái của phương trình, ta được:

4x2x+1080x12xx=0.

Nhân cả hai vế của phương trình với x để khử mẫu, ta được phương trình bậc hai:

–4x2 + 1 080 – 12x = 0

x2 + 3x – 270 = 0.

Ta có ∆ = 32 – 4.1.(–270) = 1 089 và Δ=1089=33.

Suy ra phương trình trên có hai nghiệm phân biệt:

x1=33321=18 (loại); x2=3+3321=15 (thỏa mãn điều kiện).

Vậy chiều rộng của mảnh đất là 15 (m) và chiều dài của mảnh đất là: 36015=24 (m).

Bài 6.29 trang 27 Toán 9 Tập 2: Sau hai năm, số dân của một thành phố tăng từ 1 200 000 người lên 1 452 000 người. Hỏi trung bình mỗi năm dân số của thành phố đó tăng bao nhiêu phần trăm?

Lời giải:

Gọi x là tốc độ trung bình tăng dân số của thành phố (x được cho dưới dạng số thập phân, x > 0).

Số dân của thành phố sau năm thứ nhất là: 1 200 000.(1 + x) (người).

Số dân của thành phố sau năm thứ hai là:

1 200 000.(1 + x).(1 + x) = 1 200 000.(1 + x)2 (người).

Theo bài, ta có phương trình:

1 200 000.(1 + x)2 = 1 452 000

(1 + x)2 = 1,21

1 + x = 1,1 (do x > 0).

x = 0,1 (thỏa mãn).

Vậy tốc độ gia tăng dân số của thành phố đó là 0,1 = 10%.

Bài 6.30 trang 27 Toán 9 Tập 2: Một thanh sô cô la có dạng hình hộp chữ nhật với chiều dài 12 cm, chiều rộng 7 cm và độ dày 3 cm. Do giá nguyên liệu ca cao tăng nhưng vẫn muốn giữ nguyên giá bán nên nhà sản xuất quyết định giảm 10% thể tích của mỗi thanh sô cô la. Để thực hiện việc này, nhà sản xuất dự định làm thanh sô cô la mới có cùng độ dày 3 cm như thanh cũ, nhưng chiều dài và chiều rộng sẽ giảm đi cùng một số centimét. Hỏi kích thước của thanh sô cô la mới là bao nhiêu (làm tròn kết quả đến hàng phần trăm của cm)?

Lời giải:

Gọi x (cm) là số centimét mà chiều dài và chiều rộng bị giảm (0 < x < 7).

Chiều dài và chiều rộng thanh sô cô la sau giảm lần lượt là: 12 – x (cm) và 7 – x (cm).

Thể tích của thanh sô cô la mới là: (12 – x)(7 – x).3 (cm3).

Theo bài, thể tích thanh sô cô la giảm 10% so với ban đầu nên thể tích của thanh sô cô la mới là:

(12.7.3).(100% – 10%) = 252 . 90% = 226,8 (cm3).

Khi đó, ta có phương trình:

(12 – x)(7 – x).3 = 226,8

(12 – x)(21 – 3x) = 226,8

252 – 36x – 21x + 3x2 – 226,8 = 0

3x2 – 57x + 25,2 = 0

15x2 – 285x + 126 = 0

5x2 – 95x + 42 = 0.

Ta có ∆ = (–95)2 – 4.5.42 = 8 185 > 0.

Suy ra phương trình trên có hai nghiệm phân biệt:

x1=95+81852518,55 (loại); x2=958185250,45 (thỏa mãn điều kiện).

Vậy chiều dài và chiều rộng thanh sô cô la mới lần lượt là: 12 – 0,45 = 11,55 (cm) và 7 – 0,45 = 6,55 (cm).

Bài 6.31 trang 27 Toán 9 Tập 2: Một máy bay khởi hành từ Hà Nội vào Thành phố Hồ Chí Minh, sau đó nghỉ 96 phút và tiếp tục bay về Hà Nội với vận tốc lớn hơn vận tốc lúc đi là 100 km/h. Tổng thời gian của cả hành trình, kể từ khi xuất phát từ Hà Nội đến khi quay về Hà Nội là 6 giờ. Tính vận tốc của máy bay lúc đi, biết quãng đường bay Hà Nội – Thành phố Hồ Chí Minh dài khoảng 1 200 km.

Lời giải:

Gọi x (km/h) là vận tốc máy bay khi bay từ Hà Nội vào Thành phố Hồ Chí Minh (x > 0).

Vận tốc của máy bay khi bay từ Thành phố Hồ Chí Minh về Hà Nội là x + 100 (km/h).

Thời gian bay từ Hà Nội vào Thành phố Hồ Chí Minh là: 1200x (giờ).

Thời gian bay từ Thành phố Hồ Chí Minh về Hà Nội là: 1200x+100 (giờ).

Đổi 96 phút = 1 giờ 36 phút = 1,6 (giờ).

Theo bài, tổng thời gian của cả hành trình, kể từ khi xuất phát từ Hà Nội đến khi quay về Hà Nội là 6 giờ và máy bay có nghỉ tại Thành phố Hồ Chí Minh 96 phút nên thời gian máy bay bay cả đi và về là: 6 – 1,6 = 4,4 (giờ).

Khi đó, ta có phương trình: 1200x+1200x+100=4,4.

Quy đồng mẫu vế trái của phương trình, ta được:

1200x+100xx+100+1200xxx+100=4,4.

Nhân cả hai vế của phương trình với x(x + 100) để khử mẫu, ta được phương trình:

1 200(x + 100) + 1 200x = 4,4x(x + 100)

1 200x + 120 000 + 1 200x = 4,4x2 + 440x

4,4x2 – 1 960x – 120 000 = 0

11x – 4 900x – 300 000 = 0.

Ta có ∆’ = (–2 450)2 – 11.(–300 000) = 9 302 500 > 0;

Δ'=9302500=3050.

Suy ra phương trình trên có hai nghiệm phân biệt:

x1=2450+305011=500 (thỏa mãn điều kiện); x2=2450305011=60011 (loại).

Vậy vận tốc máy bay khi bay từ Hà Nội vào Thành phố Hồ Chí Minh là 500 km/h.

Bài 6.32 trang 27 Toán 9 Tập 2: Một ô tô khách khởi hành từ Hà Nội đi Hải Phòng. Sau đó 30 phút, một ô tô con xuất phát từ cùng địa điểm ở Hà Nội và cũng đi về Hải Phòng trên cùng tuyến đường, với vận tốc lớn hơn vận tốc của ô tô khách là 20 km/h. Hai xe đến cùng một địa điểm ở Hải Phòng tại cùng một thời điểm. Hãy tính vận tốc của mỗi ô tô, biết rằng quãng đường Hà Nội – Hải Phòng dài khoảng 120 km.

Lời giải:

Gọi x (km/h) là vận tốc của ô tô khách (x > 0).

Vận tốc của ô tô con là x + 20 (km/h).

Thời gian ô tô khách đi là: 120x (giờ).

Thời gian ô tô con đi là: 120x+20 (giờ).

Đổi 30 phút = 0,5 giờ.

Theo bài, xe ô tô con xuất phát sau xe ô tô khách 30 phút nên ta có phương trình: 120x120x+20=0,5.

Quy đồng mẫu vế trái của phương trình, ta được:

120x+20xx+20120xxx+20=0,5.

Nhân hai vế của phương trình với x(x + 20) để khử mẫu, ta được phương trình:

120(x + 20) – 120x = 0,5x(x + 20)

120x + 2 400 – 120x = 0,5x2 + 10x

0,5x2 + 10x – 2 400 = 0

x2 + 20x – 4 800 = 0.

Ta có ∆’ = 102 – 1.(–4 800) = 4 900 > 0 và Δ'=490070.

Suy ra phương trình trên có hai nghiệm phân biệt:

x1=10+701=60 (thỏa mãn điều kiện); x2=10701=80 (loại).

Vậy vận tốc ô tô khách là 60 (km/h) và vận tốc của ô tô con là: 60 + 20 = 80 (km/h).

Bài 6.33 trang 27 Toán 9 Tập 2: Một xưởng may phải may 1 500 chiếc áo trong thời gian quy định. Để hoàn thành sớm kế hoạch, mỗi ngày xưởng đã may được nhiều hơn 10 chiếc áo so với số áo phải may trong một ngày theo kế hoạch. Do đó, ba ngày trước khi hết thời hạn, xưởng đã may được 1 320 áo. Hỏi theo kế hoạch, mỗi ngày xưởng đó phải may xong bao nhiêu chiếc áo?

Lời giải:

Gọi x (chiếc) là số áo phải may trong 1 ngày theo kế hoạch (x ∈ ℕ, x > 0).

Số áo thực tế xưởng đã may trong 1 ngày là x + 10 (chiếc).

Thời gian may 1 500 chiếc áo là: 1500x (ngày).

Thời gian may 1 320 chiếc áo là: 1320x+10 (ngày).

Theo bài, xưởng hoàn thành sớm 3 ngày so với kế hoạch nên ta có phương trình: 1500x1320x+10=3.

Quy đồng mẫu vế trái của phương trình, ta được:

1500x+10xx+101320xxx+10=3.

Nhân hai vế của phương trình với x(x + 10) để khử mẫu, ta được phương trình:

1 500(x + 10) – 1 320x = 3x(x + 10)

1 500x + 15 000 – 1 320x = 3x2 + 30x

3x2 – 150x – 15 000 = 0

x2 – 50x – 5 000 = 0.

Ta có ∆’ = (–25)2 – 1.(–5 000) = 5 625 và Δ'=5625=75.

Suy ra phương trình có hai nghiệm phân biệt:

x1=25+751=100 (thỏa mãn điều kiện); x2=25751=50 (loại).

Vậy theo kế hoạch mỗi ngày xưởng may 100 chiếc áo.

Xem thêm các bài giải bài tập Toán lớp 9 Kết nối tri thức hay, chi tiết khác:

Bài 20. Định lí Viète và ứng dụng

Bài 21. Giải bài toán bằng cách lập phương trình

Luyện tập chung trang 28

Bài tập cuối chương VI

Bài 22. Bảng tần số và biểu đồ tần số

Bài 23. Bảng tần số tương đối và biểu đồ tần số tương đối

Lý thuyết Giải bài toán bằng cách lập phương trình

Giải bài toán bằng cách lập phương trình

Các bước giải một bài toán bằng cách lập phương trình:

Bước 1. Lập phương trình:

– Chọn ẩn số và đặt điều kiện thích hợp cho ẩn số.

– Biểu diễn các đại lượng chưa biết theo ẩn và các đại lượng đã biết.

– Lập phương trình biểu thị mối quan hệ giữa các đại lượng.

Bước 2. Giải phương trình.

Bước 3. Trả lời: Kiểm tra xem trong các nghiệm của phương trình, nghiệm nào thỏa mãn điều kiện của ẩn, nghiệm nào không, rồi kết luận.

Ví dụ 1. Một sân khấu ngoài trời có dạng hình chữ nhật, chiều dài hơn chiều rộng 6 m, độ dài đường chéo là 289 m.

a) Tính chiều dài và chiều rộng của sân khấu đó.

b) Tính diện tích của sân khấu đó.

Hướng dẫn giải

Giải bài toán bằng cách lập phương trình (Lý thuyết Toán lớp 9) | Kết nối tri thức

a) Gọi x (m) là chiều rộng của sân khấu.

Điều kiện: x > 0.

Khi đó, chiều dài của sân khấu đó là x + 6 (m).

Vì độ dài đường chéo của sân khấu đó là 289 m nên theo định lí Pythagore, ta có:

x2+x+62=2892

Tức là, x2 + x2 + 12x + 36 = 356

Hay 2x2 + 12x – 320 = 0

Vì b = 12 nên b’ = 6.

Ta có: ∆’ = b’2 – ac = 62 – 2.(–320) = 676 > 0 và Δ'=676=26.

Do đó, phương trình 2x2 + 12x – 320 = 0 có hai nghiệm phân biệt:

x1=b'Δ'a=6262=16 (loại);

x2=b'+Δ'a=6+262=10 (thỏa mãn điều kiện).

Vậy sân khấu đó có chiều rộng là 10 m và chiều dài là 10 + 6 = 16 m.

b) Diện tích sân khấu đó là: 16.10 = 160 (m2)

Vậy diện tích sân khấu đó bằng 160 m2.

Ví dụ 2. Quãng đường từ thành phố A đến thành phố B dài 200 km. Hai ô tô khởi hành cùng một lúc từ A đến B, biết tốc độ ô tô thứ nhất lớn hơn tốc độ ô tô thứ hai là 15 km/h và ô tô thứ nhất đến B trước ô tô thứ hai là 40 phút. Tính tốc độ mỗi xe.

Hướng dẫn giải

Gọi x (km/h) là tốc độ của ô tô thứ hai (x > 0).

Khi đó tốc độ của ô tô thứ nhất là x + 15 (km/h).

Thời gian ô tô thứ hai đi từ thành phố A đến thành phố B là: 200x (giờ).

Thời gian ô tô thứ nhất đi từ thành phố A đến thành phố B là: 200x+15 (giờ).

Vì ô tô thứ nhất đến B trước ô tô thứ hai là 40 phút =23 giờ nên ta có phương trình:

200x200x+15=23.

Để giải phương trình này, ta quy đồng mẫu vế trái của phương trình:

200x+15200xxx+15=23.

Nhân cả hai vế của phương trình với 3x(x + 15) để khử mẫu, ta được phương trình:

600(x + 15) – 600x = 2x(x + 15)

2x2 + 30x – 9 000 = 0

x2 + 15x – 4 500 = 0.

Phương trình trên có: ∆ = b2 – ac = 152 – 4.1.(–4 500) = 18 225 > 0;

Δ=18225=135.

Suy ra phương trình x2 + 15x – 4 500 = 0 có hai nghiệm phân biệt:

x1=b+Δ2a=15+13521=60 (thỏa mãn điều kiện);

x2=bΔ2a=1513521=75 (loại).

Vậy tốc độ của ô tô thứ hai là 60 km/h, tốc độ ô tô thứ nhất là 75 km/h.

Đánh giá

0

0 đánh giá