Lý thuyết Căn bậc hai và căn thức bậc hai (Kết nối tri thức 2024) | Lý thuyết Toán 9

794

Với tóm tắt lý thuyết Toán lớp 9 Bài 7: Căn bậc hai và căn thức bậc hai sách Kết nối tri thức hay, chi tiết cùng với bài tập tự luyện chọn lọc giúp học sinh nắm vững kiến thức trọng tâm, ôn luyện để học tốt môn Toán 9.

Lý thuyết Toán 9 Bài 7: Căn bậc hai và căn thức bậc hai

A. Lý thuyết Căn bậc hai và căn thức bậc hai

1. Căn bậc hai

Khái niệm căn bậc hai

Căn bậc hai của số thực không âm a là số thực x sao cho x2=a.

Nhận xét:

- Số âm không có căn bậc hai.

- Số 0 có một căn bậc hai duy nhất là 0.

- Số dương a có đúng hai căn bậc hai đối nhau là a (căn bậc hai số học của a) và a.

Ví dụ:

  • 81=9 nên 81 có hai căn bậc hai là 9 và -9.
  • Căn bậc hai số học của 121 là 121=11.

Tính căn bậc hai của một số bằng máy tính cầm tay

Để tính các căn bậc hai của một số a>0, chỉ cần tính a. Có thể dễ dàng làm điều này bằng cách sử dụng MTCT.

Lý thuyết Căn bậc hai và căn thức bậc hai (Kết nối tri thức 2024) | Lý thuyết Toán 9 (ảnh 1)

Sử dụng nút này để bấm căn bậc hai.

Ví dụ:

Bấm lần lượt các phím  ta tính được 11,13,33.

Vậy căn bậc hai của 11,1 (làm tròn đến chữ số thập phân thứ hai) là 3,33 và -3,33.

Tính chất của căn bậc hai

a2=|a| với mọi số thực a.

Ví dụ: (1+2)2=|1+2|=1+2(3)2=|3|=3.

2. Căn thức bậc hai

Khái niệm căn thức bậc hai

Căn thức bậc hai là biểu thức có dạng A, trong đó A là một biểu thức đại số. A được gọi là biểu thức lấy căn hoặc biểu thức dưới dấu căn.

Ví dụ: 2x113x+2 là các căn thức bậc hai.

Điều kiện xác định của căn thức bậc hai

A xác định khi A lấy giá trị không âm và ta thường viết là A0. Ta nói A0 là điều kiện xác định (hay điều kiện có nghĩa) của A.

Ví dụ: Điều kiện xác định của căn thức 2x+1 là 2x+10 hay x12.

Điều kiện xác định của căn thức 13x+2 là 13x+20 hay x6.

Hằng đẳng thức A2=|A|

Với A là một biểu thức, ta có:

  • Với A0 ta có A0(A)2=A;
  • A2=|A|.

Ví dụ: Với x<0, ta có 1 – x > 0. Do đó (1x)2=1x.

Sơ đồ tư duy Căn bậc hai và căn thức bậc hai

B. Bài tập Căn bậc hai và căn thức bậc hai

Bài 1. Tìm căn bậc hai của mỗi số sau (làm tròn đến chữ số thập phân thứ hai):

a) 0,25;

b) 1681.

Hướng dẫn giải

a) Ta có 0,25=14 mà 14=12=0,5 nên 0,25 có hai căn bậc hai là 0,5 và −0,5.

b) Ta có 1681=1681=490,44 nên 1681 có hai căn bậc hai là 0,44 và −0,44.

Bài 2. Tìm điều kiện xác định của 2x9 và tính giá trị của căn thức tại x = 5.

Hướng dẫn giải

Xét căn thức 2x9:

Điều kiện xác định của căn thức là 2x – 9 ≥ 0 hay x92.

Tại x = 5 (thỏa mãn điều kiện xác định) căn thức có giá trị là 2.59=1.

Bài 3. Rút gon các biểu thức sau:

a) 3+42;

b) x26x+9 với x < 3.

Hướng dẫn giải

a) Áp dụng hằng đẳng thức A2=A, ta có 3+42=3+4.

 3+4>0 suy ra 3+4=3+4=3+2=5 ∀ x.

b) Áp dụng hằng đẳng thức bình phương của một hiệu và hằng đẳng thức A2=A, ta có x26x+9=x32=x3.

Do giả thiết x < 3 suy ra x – 3 < 0 nên x3=x3=3x.

Vì vậyx26x+9=x32=3x với x < 3.

Bài 4. Tìm giá trị của x, biết:

a) x2 + 36 = 0;

b) x4=13;

c) x26x+91=3.

Hướng dẫn giải

a) Xét biểu thức: x2 + 36 = 0 hay x2 = −36

Suy ra biểu thức vô nghiệm vì x2 ≥ 0 ∀x.

b) Xét căn thức x:

Điều kiện xác định của căn thức là x ≥ 0.

Ta có: x4=13

x=133

x=1332

x=1699 (thỏa mãn điều kiện)

Vậy x=1699.

c) Xét căn thức x26x+9:

Điều kiện xác định của căn thức là x2 – 6x + 9 =(x – 3)2 ≥ 0 ∀x.

Suy ra căn thức có nghĩa với mọi x.

Ta có: x26x+91=3

x32=4

x3=16=42

x – 3 = 4 hoặc x – 3 = –4

x = 7 hoặc x = –1

Vậy x ∈ {−1; 7}.

Xem thêm các bài tóm tắt lý thuyết Toán lớp 9 Kết nối tri thức hay, chi tiết khác:

Lý thuyết Bài 6: Bất phương trình bậc nhất một ẩn

Lý thuyết Bài 7: Căn bậc hai và căn thức bậc hai

Lý thuyết Bài 8: Khai căn bậc hai với phép nhân và phép chia

Lý thuyết Bài 9: Biến đổi đơn giản và rút gọn biểu thức chứa căn thức bậc hai

Lý thuyết Bài 10: Căn bậc ba và căn thức bậc ba

Lý thuyết Bài 11: Tỉ số lượng giác của góc nhọn

Đánh giá

0

0 đánh giá