Cho tam giác ABC vuông tại A có AB = 3 cm, AC = 4 cm. Chứng minh rằng các điểm A

777

Với giải Bài 5.2 trang 86 Toán 9 Tập 1 Kết nối tri thức chi tiết trong Bài 13: Mở đầu về đường tròn giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 9. Mời các bạn đón xem:

Giải bài tập Toán 9 Bài 13: Mở đầu về đường tròn

Bài 5.2 trang 86 Toán 9 Tập 1: Cho tam giác ABC vuông tại A có AB = 3 cm, AC = 4 cm. Chứng minh rằng các điểm A, B, C thuộc cùng một đường tròn. Tính bán kính của đường tròn đó.

Lời giải:

Bài 5.2 trang 86 Toán 9 Kết nối tri thức Tập 1 | Giải Toán 9

Gọi O là trung điểm của BC.

Ta có AO là trung tuyến ứng với cạnh huyền nên OA=OB=OC=12BC.

Suy ra A, B, C cùng thuộc đường tròn bán kính OA.

Tâm O là trung điểm của BC nên BC là đường kính.

Do đó, các điểm A, B, C thuộc cùng một đường tròn.

Xét tam giác ABC vuông tại A, áp dụng định lí Pythagore, ta có:

BC2 = AB2 + AC2 = 32 + 42 = 25.

Suy ra BC = 5 cm.

Khi đó OA=12BC=52=2,5  (cm).

Vậy các điểm A, B, C thuộc cùng một đường tròn và có bán kính là 2,5 cm.

Sơ đồ tư duy Mở đầu về đường tròn
Đánh giá

0

0 đánh giá