Với giải Vận dụng 3 trang 101 Toán 9 Tập 1 Chân trời sáng tạo chi tiết trong Bài 4: Hình quạt tròn và hình vành khuyên giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 9. Mời các bạn đón xem:
Giải bài tập Toán 9 Bài 4: Hình quạt tròn và hình vành khuyên
Vận dụng 3 trang 101 Toán 9 Tập 1: Cho hình vành khuyên giới hạn bởi hai đường tròn (O; r) và (O; R) với R > r. Trên đường tròn (O; R) lấy hai điểm B, C sao cho BC vừa là dây cung của (O; R), vừa là tiếp tuyến của đường tròn (O; r) tại A (Hình 11).
a) Tính độ dài đoạn thẳng BC theo r và R.
b) Cho Tính diện tích hình vành khuyên giới hạn bởi hai đường tròn (O; r) và (O; R) theo a.
Lời giải:
a) Vì BC là tiếp tuyến của đường tròn (O; r) tại A nên BC ⊥ OA.
Xét ∆OBC có OB = OC nên ∆OBC cân tại O. Do đó đường cao OA đồng thời là đường trung tuyến của tam giác.
Suy ra A là trung điểm của BC nên BC = 2AB.
Xét ∆OAB vuông tại A, theo định lí Pythagore, ta có: OB2 = OA2 + AB2.
Suy ra AB2 = OB2 – OA2 = R2 – r2.
Do đó
Khi đó
b) Theo bài, do đó
Suy ra nên
Diện tích hình vành khuyên giới hạn bởi hai đường tròn (O; r) và (O; R) là:
Lý Thuyết Hình vành khuyên
Khái niệm hình vành khuyên
Cho hai đường tròn đồng tâm và với . Hình vành khuyên là phần mặt phẳng giới hạn bởi hai đường tròn (O;r) và (O;R) được tính bởi công thức: . |
Diện tích hình vành khuyên
Diện tích của hình vành khuyên tạo bởi hai đường tròn đồng tâm và có bán kính R và r: (với R > r) |
Ví dụ: Diện tích hình vành khuyên nằm giữa hai đường tròn đồng tâm có bán kính là 3m và 5m là:
Xem thêm lời giải bài tập Toán lớp 9 Chân trời sáng tạo hay, chi tiết khác:
Thực hành 1 trang 99 Toán 9 Tập 1: Tính độ dài cung 72° của một đường tròn có bán kính 25 cm........
Bài 1 trang 102 Toán 9 Tập 1: Tính độ dài các cung 30°; 90°; 120° của đường tròn (O; 6 cm)........
Xem thêm các bài giải bài tập Toán lớp 9 Chân trời sáng tạo hay, chi tiết khác:
Bài 3. Góc ở tâm, góc nội tiếp
Bài 4. Hình quạt tròn và hình vành khuyên
Hoạt động 1. Làm giác kế đo góc nâng đơn giản