Ta có thể tính diện tích của miếng bánh pizza trong Hình 4a theo góc ở tâm và bán kính

108

Với giải Khám phá 2 trang 99 Toán 9 Tập 1 Chân trời sáng tạo chi tiết trong Bài 4: Hình quạt tròn và hình vành khuyên giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 9. Mời các bạn đón xem:

Giải bài tập Toán 9 Bài 4: Hình quạt tròn và hình vành khuyên

Khám phá 2 trang 99 Toán 9 Tập 1a) Ta có thể tính diện tích của miếng bánh pizza trong Hình 4a theo góc ở tâm và bán kính của ổ bánh hay không?

b) Chia một hình tròn bán kính R thành 360 phần bằng nhau.

i) Tính diện tích của mỗi phần đó.

ii) Tính diện tích phần hình tròn ghép bởi n phần bằng nhau nói trên (Hình 4b).

Khám phá 2 trang 99 Toán 9 Tập 1 Chân trời sáng tạo | Giải Toán 9

Lời giải:

a) Ta có thể tính diện tích của miếng bánh pizza trong Hình 4a theo góc ở tâm và bán kính của ổ bánh.

b) Một hình tròn bán kính R có diện tích là: πR2 (đơn vị diện tích).

i) Chia hình tròn thành 360 phần bằng nhau thì diện tích mỗi phần là: πR2360 (đơn vị diện tích).

ii) Diện tích phần hình tròn ghép bởi n phần bằng nhau là: nπR2360 (đơn vị diện tích).

Lý Thuyết Hình quạt tròn

Khái niệm hình quạt tròn

Lý thuyết Hình quạt tròn và hình vành khuyên (Chân trời sáng tạo 2024) | Lý thuyết Toán 9 (ảnh 3)

Hình quạt tròn là một phần hình tròn giới hạn bởi một cung tròn và hai bán kính đi qua hai mút của cung đó.

Diện tích hình quạt tròn

Diện tích hình quạt tròn bán kính R ứng với cung no:

S=πR2n360

Ví dụ: Diện tích hình quạt tròn có độ dài tương ứng với nó là l=4πcm, bán kính là R = 5cm là:

Sq=l.R2=4π.52=10π(cm2)

Đánh giá

0

0 đánh giá