Vẽ đường tròn (C) tâm O bán kính r = 5 cm và đường tròn (C’) tâm O bán kính R = 8 cm

93

Với giải Khám phá 3 trang 101 Toán 9 Tập 1 Chân trời sáng tạo chi tiết trong Bài 4: Hình quạt tròn và hình vành khuyên giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 9. Mời các bạn đón xem:

Giải bài tập Toán 9 Bài 4: Hình quạt tròn và hình vành khuyên

Khám phá 3 trang 101 Toán 9 Tập 1a) Vẽ đường tròn (C) tâm O bán kính r = 5 cm và đường tròn (C’) tâm O bán kính R = 8 cm.

b) Tính diện tích S của (C) và diện tích S’ của (C’).

c) Hãy cho biết hiệu số (S’ – S) biểu diễn diện tích của phần nào trên Hình 9.

Khám phá 3 trang 101 Toán 9 Tập 1 Chân trời sáng tạo | Giải Toán 9

Lời giải:

a)

Khám phá 3 trang 101 Toán 9 Tập 1 Chân trời sáng tạo | Giải Toán 9

b) Diện tích S của đường tròn (C) là: S = π.52 = 25π (cm2).

Diện tích S’ của đường tròn (C’) là: S’ = π.82 = 64π (cm2).

c) Hiệu số (S’ – S) biểu diễn diện tích phần giới hạn bởi hai đường tròn (C) và (C’).

Lý Thuyết Hình vành khuyên

Khái niệm hình vành khuyên

Lý thuyết Hình quạt tròn và hình vành khuyên (Chân trời sáng tạo 2024) | Lý thuyết Toán 9 (ảnh 4)

Cho hai đường tròn đồng tâm (O;R) và (O;r) với R>r.

Hình vành khuyên là phần mặt phẳng giới hạn bởi hai đường tròn (O;r) và (O;R) được tính bởi công thức: S=π(R2r2).

Diện tích hình vành khuyên

Diện tích Sv của hình vành khuyên tạo bởi hai đường tròn đồng tâm và có bán kính R và r:

Sv=π(R2r2) (với R > r)

Ví dụ:  Diện tích hình vành khuyên nằm giữa hai đường tròn đồng tâm có bán kính là 3m và 5m là:

Sv=π(5232)=16π(m2)

Đánh giá

0

0 đánh giá