Tính diện tích hình vành khuyên giới hạn bởi hai đường tròn (O; 10 cm) và (O; 20 cm)

254

Với giải Thực hành 3 trang 101 Toán 9 Tập 1 Chân trời sáng tạo chi tiết trong Bài 4: Hình quạt tròn và hình vành khuyên giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 9. Mời các bạn đón xem:

Giải bài tập Toán 9 Bài 4: Hình quạt tròn và hình vành khuyên

Thực hành 3 trang 101 Toán 9 Tập 1: Tính diện tích hình vành khuyên giới hạn bởi hai đường tròn (O; 10 cm) và (O; 20 cm) (kết quả làm tròn đến hàng phần trăm).

Lời giải:

Diện tích hình vành khuyên giới hạn bởi đường tròn (O; 10 cm) và (O; 20 cm) là:

S = π(R2 – r2) = π(202 – 102) = 300π ≈ 942,48 (cm2).

Lý Thuyết Hình vành khuyên

Khái niệm hình vành khuyên

Lý thuyết Hình quạt tròn và hình vành khuyên (Chân trời sáng tạo 2024) | Lý thuyết Toán 9 (ảnh 4)

Cho hai đường tròn đồng tâm (O;R) và (O;r) với R>r.

Hình vành khuyên là phần mặt phẳng giới hạn bởi hai đường tròn (O;r) và (O;R) được tính bởi công thức: S=π(R2r2).

Diện tích hình vành khuyên

Diện tích Sv của hình vành khuyên tạo bởi hai đường tròn đồng tâm và có bán kính R và r:

Sv=π(R2r2) (với R > r)

Ví dụ:  Diện tích hình vành khuyên nằm giữa hai đường tròn đồng tâm có bán kính là 3m và 5m là:

Sv=π(5232)=16π(m2)

Đánh giá

0

0 đánh giá