Tailieumoi.vn giới thiệu giải Chuyên đề học tập Toán lớp 12 Bài tập cuối chuyên đề 2 trang 44 sách Kết nối tri thức hay, chi tiết giúp học sinh xem và so sánh lời giải từ đó biết cách làm Chuyên đề Toán 12. Mời các bạn đón xem:
Giải Chuyên đề Toán 12 Bài tập cuối chuyên đề 2 trang 44
a) Gọi x là số gói cà phê tiêu chuẩn và y là số gói cà phê cao cấp, hãy viết hệ bất phương trình bậc nhất mô tả số lượng gói có thể có của mỗi loại.
b) Biểu diễn hình học miền nghiệm của hệ bất phương trình bậc nhất nhận được ở câu a và tìm các đỉnh của miền nghiệm.
c) Lợi nhuận của mỗi gói cà phê tiêu chuẩn là 30 nghìn đồng và của mỗi gói cà phê cao cấp là 40 nghìn đồng. Hỏi cần chuẩn bị bao nhiêu gói cà phê mỗi loại để lợi nhuận thu được là lớn nhất? Giả sử rằng tất cả các gói cà phê đã chuẩn bị đều có thể bán được.
Lời giải:
Đổi 75 kg = 75 000 g; 120 kg = 120 000 g.
a) Hệ bất phương trình bậc nhất mô tả số lượng gói có thể có của mỗi loại là:
b) Miền nghiệm của hệ bất phương trình ở câu a là miền tứ giác OABC được tô màu như hình vẽ dưới đây:
Ở đây, d1: x + 2y = 300 và d2: 3x + 2y = 480.
Các đỉnh của miền nghiệm là: O(0; 0), A(0; 150), B(90; 105), C(160; 0).
c) Lợi nhuận thu được là: F(x; y) = 30x + 40y (nghìn đồng).
Bài toán yêu cầu tìm giá trị lớn nhất của F(x; y) trên miền nghiệm của hệ bất phương trình trên. Ta biết rằng, F(x; y) đạt giá trị lớn nhất tại một trong các đỉnh của tứ giác. Tính giá trị của F(x; y) tại các đỉnh của tứ giác ta được:
F(0; 0) = 30.0 + 40.0 = 0;
F(0; 150) = 30.0 + 40.150 = 6 000;
F(90; 105) = 30.90 + 40.105 = 6 900;
F(160; 0) = 30.160 + 40.0 = 4 800.
Giá trị lớn nhất của F(x; y) bằng 6 900 tại điểm cực biên B(90; 105). Phương án tối ưu là (90; 105).
Vậy cần chuẩn bị 90 gói cà phê tiêu chuẩn và 105 gói cà phê cao cấp để lợi nhuận thu được là lớn nhất.
Lời giải:
Gọi x và y lần lượt là số sản phẩm thứ nhất và sản phẩm thứ hai cần sản xuất.
Lợi nhuận thu được là: 400x + 600y (nghìn đồng).
Hệ bất phương trình ràng buộc x và y là
Miền nghiệm của hệ bất phương trình này là miền ngũ giác OABCD được tô màu như hình vẽ dưới đây:
Ở đây, d1: 2x + y = 70, d2: x + y = 40 và d3: x + 3y = 90.
Các điểm cực biên là: O(0; 0), A(0; 30), B(15; 25), C(30; 10), D(35; 0).
Bài toán yêu cầu tìm giá trị lớn nhất của F(x; y) trên miền nghiệm của hệ bất phương trình trên. Ta biết rằng, F(x; y) đạt giá trị lớn nhất tại một trong các đỉnh của ngũ giác. Tính giá trị của F(x; y) tại các đỉnh của ngũ giác ta được:
F(0; 0) = 400.0 + 600.0 = 0;
F(0; 30) = 400.0 + 600.30 = 18 000;
F(15; 25) = 400.15 + 600.25 = 21 000;
F(30; 10) = 400.30 + 600.10 = 18 000;
F(35; 0) = 400.35 + 600.0 = 14 000.
Giá trị lớn nhất của F(x; y) bằng 21 000 tại điểm cực biên B(15; 25). Phương án tối ưu là (15; 25).
Vậy cần sản xuất 15 đơn vị sản phẩm thứ nhất và 25 đơn vị sản phẩm thứ hai để lợi nhuận thu được là lớn nhất.
Lời giải:
Gọi x và y lần lượt là số đại diện bán hàng ở Hà Nội và Thành phố Hồ Chí Minh được cử đến dự cuộc họp bán hàng ở Đà Nẵng.
Tổng chi phí vé máy bay là: 2x + 2,4x (nghìn đồng).
Hệ bất phương trình ràng buộc x và y là
Miền nghiệm của hệ bất phương trình này là miền tứ giác ABCD được tô màu như hình vẽ dưới đây với đường thẳng d: x + y = 40.
Các điểm cực biên là: A(18; 22), B(28; 22), C(28; 16), D(24; 16).
Bài toán yêu cầu tìm giá trị nhỏ nhất của F(x; y) trên miền nghiệm của hệ bất phương trình trên. Ta biết rằng, F(x; y) đạt giá trị nhỏ nhất tại một trong các đỉnh của tứ giác. Tính giá trị của F(x; y) tại các đỉnh của tứ giác ta được:
F(18; 22) = 2.18 + 2,4.22 = 88,8;
F(28; 22) = 2.28 + 2,4.22 = 108,8;
F(28; 16) = 2.28 + 2,4.16 = 94,4;
F(24; 16) = 2.24 + 2,4.16 = 86,4.
Giá trị nhỏ nhất của F(x; y) bằng 86,4 tại điểm cực biên B(24; 16). Phương án tối ưu là (24; 16).
Vậy cần cử 24 đại diện bán hàng ở Hà Nội và 16 đại diện bán hàng ở Thành phố Hồ Chí Minh đến dự cuộc họp bán hàng ở Đà Nẵng để tổng chi phí vé máy bay là nhỏ nhất.
trong đó g là gia tốc trọng trường và c là hệ số ma sát của bề mặt (Theo Sullivan and Miranda, Calculus, W.H. Freeman and Company, 2014). Chứng tỏ rằng lực kéo F nhỏ nhất khi tanθ = c.
Lời giải:
Xét hàm số với θ ∈ [0°; 90°].
Đạo hàm của hàm F là:
Ta có
Giả sử θ0 thỏa mãn sao cho tanθ0 = c.
Vận dụng phương pháp tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số trên một đoạn, ta có:
F(0°) = cmg; F(90°) = mg.
Dễ thấy rằng F(α) là giá trị nhỏ nhất trong các giá trị F(0°), F(α), F(90°).
Do đó F đạt giá trị nhỏ nhất tại θ0 thỏa mãn tanθ0 = c.
Vậy lực kéo F nhỏ nhất khi tanθ = c.
Lời giải:
Giả sử tình huống được mô tả bởi hình vẽ dưới đây với C là vị trí mắt của người quan sát, DB = 4 m là chiều cao của bức tranh, AD = 3 m là khoảng cách từ mép dưới của bức tranh đến mắt người quan sát.
Giả sử AC = x (m) là khoảng cách từ người quan sát đến tường, x > 0.
Khi đó, ta có: và
Áp dụng hệ quả định lí Cosin vào tam giác BCD, ta có:
Hay
Với θ ∈ (0°; 90°), để góc nhìn θ lớn nhất thì cosθ nhỏ nhất.
Đặt hàm số xét trên khoảng (0; +∞).
Khi đó, ta cần tìm giá trị nhỏ nhất của f(x) trên (0; +∞).
Ta có
f’(x) = 0 ⇔ 16x3 – 336x = 0 ⇔ x = 0 (loại) hoặc x2 = 21
(do x ∈ (0; +∞)).
Lập bảng biến thiên của hàm số trên khoảng (0; +∞).
Từ bảng biến thiên, ta có khi
Vậy người quan sát phải đứng cách tường mét để có được tầm nhìn thuận lợi nhất (tức là, có góc nhìn θ lớn nhất).
Lời giải:
Gọi x (m) là chiều cao của đèn, x > 0.
Khi đó, ta có: s2 = x2 + 202 = x2 + 400 và
Cường độ chiếu sáng của đèn là:
Xét hàm số trên khoảng (0; +∞).
Đạo hàm của hàm số I là:
Ta có I’ = 0 ⇔ 400 – x2 = 0 ⇔ x = 20 (do x > 0).
Lập bảng biến thiên của hàm số trên khoảng (0; +∞).
Từ bảng biến thiên, ta có khi x = 20.
a) Mức giá nào sẽ mang lại lợi nhuận lớn nhát?
b) Khi lợi nhuận là lớn nhất, chi phí trung bình cho mỗi đơn vị là bao nhiêu?
Lời giải:
a) Hàm lợi nhuận là:
P(x) = xp(x) – C(x) = x.(100 – 0,5x) – (40x + 37,5)
= 100x – 0,5x2 – 40x – 37,5
= – 0,5x2 + 60x – 37,5.
Để lợi nhuận lớn nhất thì ta phải tìm giá tị lớn nhất của hàm P(x) với x ≥ 0.
Ta có P’(x) = –x + 60 = 0 khi x = 60.
Khi đó P(60) = 1 762,5 (nghìn đồng) là giá trị lớn nhất của hàm lợi nhuận, đạt được khi x = 60.
Vậy mức giá p = 100 – 0,5.60 = 70 nghìn đồng sẽ mang lại lợi nhuận lớn nhất.
b) Theo câu a, với lợi nhuận lớn nhất, ta có x = 60.
Vậy chi phí trung bình cho mỗi đơn vị hàng hóa là:
(nghìn đồng).
Xem thêm các bài giải Chuyên đề học tập Toán 12 Kết nối tri thức hay, chi tiết khác: