Với giải Luyện tập 11 trang 57 Toán 12 Tập 1 Kết nối tri thức chi tiết trong Bài 6: Vectơ trong không gian giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 12. Mời các bạn đón xem:
Giải bài tập Toán 12 Bài 6: Vectơ trong không gian
Luyện tập 11 trang 57 Toán 12 Tập 1: Cho hình lập phương ABCD.A’B’C’D’. Chứng minh rằng .
Lời giải:
Giả sử cạnh của hình lập phương ABCD.A’B’C’D’ bằng 1. Khi đó,
Gọi E’ là giao điểm của hai đường chéo A’C’ và B’D’ của hình vuông A’B’C’D’. Khi đó, E’ là trung điểm của A’C’ và B’D’. Suy ra và .
Gọi E là trung điểm của CC’. Mà E’ là trung điểm của A’C’ nên EE’ là đường trung bình của tam giác A’C’C. Do đó, và
Áp dụng định lí Pythagore vào A’C’C vuông tại C’ có:
Áp dụng định lí Pythagore vào D’C’E vuông tại C’ có:
Vì nên E’D’E vuông tại E’. Do đó,
Ta có: (đpcm)
Xem thêm lời giải bài tập Toán lớp 12 Kết nối tri thức hay, chi tiết khác:
Luyện tập 5 trang 50 Toán 12 Tập 1: Cho hình hộp hình chữ nhật ABCD.A’B’C’D’. Chứng minh rằng ......
Bài 2.4 trang 58 Toán 12 Tập 1: Cho hình hộp ABCD.A’B’C’D’. Chứng minh rằng:......
Bài 2.12 trang 59 Toán 12 Tập 1: Cho tứ diện ABCD. Chứng minh rằng.....
Xem thêm các bài giải bài tập Toán lớp 12 Kết nối tri thức hay, chi tiết khác:
Bài 7. Hệ trục toạ độ trong không gian