Vận dụng 3 trang 54 Toán 12 Tập 1 Kết nối tri thức | Giải bài tập Toán 12

322

Với giải Vận dụng 3 trang 54 Toán 12 Tập 1 Kết nối tri thức chi tiết trong Bài 6: Vectơ trong không gian giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 12. Mời các bạn đón xem:

Giải bài tập Toán 12 Bài 6: Vectơ trong không gian

Vận dụng 3 trang 54 Toán 12 Tập 1: Khi chuyển động trong không gian, máy bay luôn chịu tác động của bốn lực chính: lực đẩy của động cơ, lực cản của không khí, trọng lực và lực nâng khí động học (H.2.20). Lực cản của không khí ngược hướng với lực đẩy của động cơ và có độ lớn tỉ lệ thuận với bình phương vận tốc máy bay. Một chiếc máy bay tăng vận tốc từ 900km/h lên 920km/h, trong quá trình tăng tốc máy bay giữ nguyên hướng bay. Lực cản của không khí khi máy bay đạt vận tốc 900km/h và 920km/h lần lượt được biểu diễn bởi hai vectơ F1 và F2. Hãy giải thích vì sao F1=kF2 với k là một số thực dương nào đó. Tính giá trị của k (làm tròn kết quả đến chữ số thập phân thứ hai).

Tài liệu VietJack

Lời giải:

Vì trong quá trình máy bay tăng vận tốc từ 900km/h lên 920km/h máy bay giữ nguyên hướng bay nên vectơ F1 và F2 có cùng hướng. Do đó, F1=kF2 với k là một số thực dương nào đó (1).

Gọi v1,v2 lần lượt là vận tốc của của chiếc máy bay khi đạt 900km/h và 920km/h.

Suy ra v1=900(km/h),v2=920(km/h)

Vì lực cản của không khí ngược hướng với lực đẩy của động cơ và có độ lớn tỉ lệ thuận với bình phương vận tốc máy bay nên

|F1||F2|=v12v22=90029202=20252116|F1|=20252116|F2| (2)

Từ (1) và (2) ta có: F1=20252116F2k=202521160,96

Đánh giá

0

0 đánh giá