Với giải Bài 1.24 trang 32 Toán 12 Tập 1 Kết nối tri thức chi tiết trong Bài 4: Khảo sát sự biến thiên và vẽ đồ thị của hàm số giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 12. Mời các bạn đón xem:
Giải bài tập Toán 12 Bài 4: Khảo sát sự biến thiên và vẽ đồ thị của hàm số
Bài 1.24 trang 32 Toán 12 Tập 1: Một cốc chứa 30ml dung dịch KOH (potassium hydroxide) với nồng độ 100mg/ml. Một bình chứa dung dịch KOH khác chứa nồng độ 8mg/ml được trộn vào cốc.
a) Tính nồng độ KOH trong cốc sau khi trộn x (ml) từ bình chứa, kí hiệu là C(x).
b) Coi hàm C(x) là hàm số xác định với . Khảo sát sự biến thiên và vẽ đồ thị của hàm số này.
c) Giải thích tại sao nồng độ KOH trong cốc giảm theo x nhưng luôn lớn hơn 8mg/ml.
Lời giải:
a) Khối lượng dung dịch trong cốc sau khi trộn x(ml) KOH từ bình chứa là:
Thể tích dung dịch trong cốc sau khi trộn x(ml) KOH từ bình chứa là:
Nồng độ KOH trong cốc sau khi trộn x (ml) từ bình chứa là:
b) Khảo sát hàm số với .
1. Tập xác định của hàm số:
2. Sự biến thiên:
Hàm số nghịch biến trên .
Hàm số không có cực trị.
.
Do đó, đồ thị hàm số nhận đường thẳng làm tiệm cận ngang (phần bên phải trục Oy)
Bảng biến thiên:
3. Đồ thị: Giao điểm của đồ thị hàm số với trục tung là (0;100).
Đồ thị hàm số đi qua các điểm (200; 20); .
Đồ thị của hàm số với là phần nét màu xanh không bị gạch chéo.
c) Vì và nên nồng độ KOH trong cốc giảm theo x nhưng luôn lớn hơn 8mg/ml
Xem thêm lời giải bài tập Toán lớp 12 Kết nối tri thức hay, chi tiết khác:
HĐ1 trang 26 Toán 12 Tập 1: Cho hàm số . Thực hiện lần lượt các yêu cầu sau:......
Luyện tập 1 trang 28 Toán 12 Tập 1: Khảo sát sự biến thiên và vẽ đồ thị của hàm số . ......
Luyện tập 3 trang 32 Toán 12 Tập 1: Khảo sát sự biến thiên và vẽ đồ thị của hàm số .......
Bài 1.21 trang 32 Toán 12 Tập 1: Khảo sát sự biến thiên và vẽ đồ thị của các hàm số sau:......
Bài 1.22 trang 32 Toán 12 Tập 1: Khảo sát sự biến thiên và vẽ đồ thị của các hàm số sau:.....
Bài 1.23 trang 32 Toán 12 Tập 1: Khảo sát sự biến thiên và vẽ đồ thị của các hàm số sau:......
Xem thêm các bài giải bài tập Toán lớp 12 Kết nối tri thức hay, chi tiết khác:
Bài 3. Đường tiệm cận của đồ thị hàm số
Bài 4. Khảo sát sự biến thiên và vẽ đồ thị của hàm số
Bài 5. Ứng dụng đạo hàm để giải quyết một số vấn đề liên quan đến thực tiễn