Với giải Bài 1.22 trang 32 Toán 12 Tập 1 Kết nối tri thức chi tiết trong Bài 4: Khảo sát sự biến thiên và vẽ đồ thị của hàm số giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 12. Mời các bạn đón xem:
Giải bài tập Toán 12 Bài 4: Khảo sát sự biến thiên và vẽ đồ thị của hàm số
Bài 1.22 trang 32 Toán 12 Tập 1: Khảo sát sự biến thiên và vẽ đồ thị của các hàm số sau:
a) ;
b) .
Lời giải:
a) 1. Tập xác định của hàm số:
2. Sự biến thiên:
Hàm số đồng biến trên khoảng và .
Hàm số không có cực trị.
.
.
Do đó, đồ thị hàm số nhận đường thẳng làm tiệm cận đứng và đường thẳng làm tiệm cận ngang.
Bảng biến thiên:
3. Đồ thị: Giao điểm của đồ thị hàm số với trục tung là (0;1).
Giao điểm của đồ thị hàm số với trục hoành là điểm .
Đồ thị hàm số nhận giao điểm I(-1; 2) của hai đường tiệm cận làm tâm đối xứng và nhận hai đường phân giác của góc tạo bởi hai đường tiệm cận này làm các trục đối xứng.
b) 1. Tập xác định của hàm số:
2. Sự biến thiên:
Hàm số đồng biến trên khoảng và .
Hàm số không có cực trị.
Do đó, đồ thị hàm số nhận đường thẳng làm tiệm cận đứng và đường thẳng làm tiệm cận ngang.
Bảng biến thiên:
3. Đồ thị:
Giao điểm của đồ thị hàm số với trục tung là (0; 3).
Giao điểm của đồ thị hàm số với trục hoành là điểm .
Đồ thị hàm số nhận giao điểm I(1; -1) của hai đường tiệm cận làm tâm đối xứng và nhận hai đường phân giác của góc tạo bởi hai đường tiệm cận này làm các trục đối xứng.
Xem thêm lời giải bài tập Toán lớp 12 Kết nối tri thức hay, chi tiết khác:
HĐ1 trang 26 Toán 12 Tập 1: Cho hàm số . Thực hiện lần lượt các yêu cầu sau:......
Luyện tập 1 trang 28 Toán 12 Tập 1: Khảo sát sự biến thiên và vẽ đồ thị của hàm số . ......
Luyện tập 3 trang 32 Toán 12 Tập 1: Khảo sát sự biến thiên và vẽ đồ thị của hàm số .......
Bài 1.21 trang 32 Toán 12 Tập 1: Khảo sát sự biến thiên và vẽ đồ thị của các hàm số sau:......
Bài 1.22 trang 32 Toán 12 Tập 1: Khảo sát sự biến thiên và vẽ đồ thị của các hàm số sau:.....
Bài 1.23 trang 32 Toán 12 Tập 1: Khảo sát sự biến thiên và vẽ đồ thị của các hàm số sau:......
Xem thêm các bài giải bài tập Toán lớp 12 Kết nối tri thức hay, chi tiết khác:
Bài 3. Đường tiệm cận của đồ thị hàm số
Bài 4. Khảo sát sự biến thiên và vẽ đồ thị của hàm số
Bài 5. Ứng dụng đạo hàm để giải quyết một số vấn đề liên quan đến thực tiễn