Với giải Bài 1.21 trang 32 Toán 12 Tập 1 Kết nối tri thức chi tiết trong Bài 4: Khảo sát sự biến thiên và vẽ đồ thị của hàm số giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 12. Mời các bạn đón xem:
Giải bài tập Toán 12 Bài 4: Khảo sát sự biến thiên và vẽ đồ thị của hàm số
Bài 1.21 trang 32 Toán 12 Tập 1: Khảo sát sự biến thiên và vẽ đồ thị của các hàm số sau:
a) ;
b) .
Lời giải:
a) Tập xác định:
2. Sự biến thiên:
Ta có:
Trên khoảng , nên hàm số đồng biến. Trên khoảng và , nên hàm số nghịch biến trên mỗi khoảng đó.
Hàm số đạt cực đại tại , giá trị cực đại . Hàm số đạt cực tiểu tại , giá trị cực tiểu
Giới hạn tại vô cực:
Bảng biến thiên:
3. Đồ thị:
Giao điểm của đồ thị hàm số với trục tung là (0; 1).
Các điểm (1; 3); thuộc đồ thị hàm số .
Đồ thị hàm số có tâm đối xứng là điểm (0; 1).
b) 1. Tập xác định:
2. Sự biến thiên:
Ta có: hoặc
Trên khoảng , nên hàm số nghịch biến. Trên khoảng và , nên hàm số đồng biến trên mỗi khoảng đó.
Hàm số đạt cực đại tại , giá trị cực đại . Hàm số đạt cực tiểu tại , giá trị cực tiểu .
Giới hạn tại vô cực:
Bảng biến thiên:
3. Đồ thị:
Giao điểm của đồ thị hàm số với trục tung là (0; -1).
Các điểm (-1; 2); thuộc đồ thị hàm số .
Đồ thị hàm số có tâm đối xứng là điểm (-1; 2).
Xem thêm lời giải bài tập Toán lớp 12 Kết nối tri thức hay, chi tiết khác:
HĐ1 trang 26 Toán 12 Tập 1: Cho hàm số . Thực hiện lần lượt các yêu cầu sau:......
Luyện tập 1 trang 28 Toán 12 Tập 1: Khảo sát sự biến thiên và vẽ đồ thị của hàm số . ......
Luyện tập 3 trang 32 Toán 12 Tập 1: Khảo sát sự biến thiên và vẽ đồ thị của hàm số .......
Bài 1.21 trang 32 Toán 12 Tập 1: Khảo sát sự biến thiên và vẽ đồ thị của các hàm số sau:......
Bài 1.22 trang 32 Toán 12 Tập 1: Khảo sát sự biến thiên và vẽ đồ thị của các hàm số sau:.....
Bài 1.23 trang 32 Toán 12 Tập 1: Khảo sát sự biến thiên và vẽ đồ thị của các hàm số sau:......
Xem thêm các bài giải bài tập Toán lớp 12 Kết nối tri thức hay, chi tiết khác:
Bài 3. Đường tiệm cận của đồ thị hàm số
Bài 4. Khảo sát sự biến thiên và vẽ đồ thị của hàm số
Bài 5. Ứng dụng đạo hàm để giải quyết một số vấn đề liên quan đến thực tiễn