Một chiếc xe khách đi từ Thành phố Hồ Chí Minh đến Cần Thơ, quãng đường dài 170km

1.8 K

Với giải Luyện tập 1 trang 22 Toán 9 Tập 1 Kết nối tri thức chi tiết trong Bài 3: Giải bài toán bằng cách lập hệ phương trình giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 9. Mời các bạn đón xem:

Giải bài tập Toán 9 Bài 3: Giải bài toán bằng cách lập hệ phương trình

Luyện tập 1 trang 22 Toán 9 Tập 1Một chiếc xe khách đi từ Thành phố Hồ Chí Minh đến Cần Thơ, quãng đường dài 170km. Sau khi xe khách xuất phát từ 1 giờ 40 phút, một chiếc xe tải bắt đầu đi từ Cần Thơ về Thành phố Hồ Chí Minh và gặp xe khách sau đó 40 phút. Tính vận tốc của mỗi xe, biết rằng mỗi giờ xe khách đi nhanh hơn xe tải 15km.

Hướng dẫn. Gọi x(km/h) là vận tốc của xe tải và y(km/h) là vận tốc xe khách x,y>0. Chú ý rằng hai xe (đi ngược chiều) gặp nhau khi tổng quãng đường hai xe đã đi bằng 170 km.

Lời giải:

Gọi x(km/h) là vận tốc của xe tải và y(km/h) là vận tốc xe khách x,y>0.

Thời gian di chuyển của xe khách từ HCM đến điểm gặp nhau là 1 giờ 40 phút + 40 phút = 2 giờ 20 phút =83 (giờ) nên quãng đường xe khách đi được là 83.y(km).

Thời gian di chuyển của xe tải từ Cần Thơ đến điểm gặp nhau là 40 phút =23 (giờ) nên quãng đường xe tải đi được là 23x(km).

Vì hai xe di chuyển ngược chiều nên tổng quãng đường hai xe đi được chính là khoảng cách từ HCM đến Cần Thơ nên ta có phương trình: 83y+23x=170(km).

Mỗi giờ xe khách đi nhanh hơn xe tải 15km nên ta có phương trình yx=15

Từ đó ta có hệ phương trình: {83y+23x=170yx=15

Từ phương trình thứ hai ta có y=15+x thế vào phương trình đầu ta được 83(15+x)+23x=170 suy ra 103x+40=170 nên x=39(t/m).

Với x=39 ta có y=15+39=54(t/m).

Vậy vận tốc của xe tải là 39 km/h và vận tốc của xe khách là 54 km/h.

Lý thuyết Các bước giải bài toán bằng cách lập hệ phương trình:

Bước 1. Lập hệ phương trình:

- Chọn ẩn số (thường chọn hai ẩn số) và đặt điều kiện thích hợp cho các ẩn số;

- Biểu diễn các đại lượng chưa biết theo ẩn và các đại lượng đã biết;

- Lập hệ phương trình biểu thị mối quan hệ giữa các đại lượng.

Bước 2. Giải hệ phương trình.

Bước 3. Trả lời: Kiểm tra xem trong các nghiệm tìm được của hệ phương trình, nghiệm nào thỏa mãn, nghiệm nào không thỏa mãn điều kiện của ẩn, rồi kết luận.

Ví dụ 1: Giải bài toán bằng cách lập hệ phương trình

Hai xe cùng khởi hành một lúc ở hai tỉnh A và tỉnh B cách nhau 60km. Nếu đi ngược chiều thì gặp nhau sau 1 giờ; nếu đi cùng chiều thì xe đi nhanh sẽ đuổi kịp xe kia sau 3 giờ. Tìm vận tốc mỗi xe.

Lời giải:

Gọi x là vận tốc của xe đi nhanh, y là vận tốc của xe đi chậm ( x,y>0;x>y và x, y tính bằng km/h).

Sau 1 giờ hai xe gặp nhau, nên ta có phương trình:

x + y = 60

Sau 3 giờ mỗi xe đi được 3x; 3y ( km) và gặp nhau, nên ta có phương trình:

3x – 3y = 60.

Vậy, ta có hệ phương trình:

{x+y=603x3y=60{3x+3y=1803x3y=60

{x=40y=20

(x=40;y=20 thỏa mãn các điều kiện đã nêu)

Vậy xe đi nhanh có vận tốc 40(km/h), xe đi chậm có vận tốc 20(km/h).

Ví dụ 2: Giải bài toán bằng cách lập hệ phương trình

Tìm một số có hai chữ số, biết rằng tổng của hai chữ số ấy bằng 12 và khi thay đổi thứ tự hai chữ số thì được một số lớn hơn số cũ là 18.

Lời giải:

Gọi x, y là các chữ số hàng chục và hàng đơn vị của số đã cho (xN,0<x9 ,0x9)

Khi đó hai số có dạng xy¯=10x+y và yx¯=10y+x.

Ta có hệ phương trình:

{x+y=1210y+x18=10x+y

{x+y=12xy=2

{x=5y=7

Vậy số cần tìm là 57.

Đánh giá

0

0 đánh giá