Cho hình vuông ABCD, gọi O là giao điểm của hai đường chéo, lấy G trên cạnh BC

660

Với giải Bài 49 trang 79 SBT Toán lớp 8 Cánh diều chi tiết trong Bài 8: Trường hợp đồng dạng thứ ba của tam giác giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 8. Mời các bạn đón xem:

Giải SBT Toán 8 Bài 8: Trường hợp đồng dạng thứ ba của tam giác

Bài 49 trang 79 SBT Toán 8 Tập 2Cho hình vuông ABCD, gọi O là giao điểm của hai đường chéo, lấy G trên cạnh BC, H trên cạnh CD sao cho GOH^=45°. Gọi M là trung điểm của AB. Chứng minh:

a) ∆HOD ᔕ ∆OGB;

b) MG // AH.

Lời giải:

Cho hình vuông ABCD, gọi O là giao điểm của hai đường chéo, lấy G trên cạnh BC

a) Do ABCD là hình vuông nên đường chéo là tia phân giác của mỗi góc.

Suy ra CDB^=CBD^=45°.

Mặt khác:

DOH^+BOG^=180°GOH^=180°45°=135°;

BOG^+BGO^=180°OBG^=180°45°=135°.

Suy ra DOH^=BGO^.

Xét ∆HOD và ∆OGB có:

HDO^=OBG^=45°DOH^=BGO^

Suy ra ∆HOD ᔕ ∆OGB (g.g).

b) Theo câu a, ta có ∆HOD ᔕ ∆OGB, suy ra HDOB=ODGB (tỉ số đồng dạng)

Do đó HD.GB = OB.OD.

Đặt MB = a, khi đó AD = 2a (do M là trung điểm của AB, AB = AD)

Xét ∆ABD vuông tại A, theo định lí Pythagore ta có: BD2 = AB2 + AD2.

Do đó BD=AB2+AD2 = 2a2+2a2=8a2=2a2.

Suy ra OB=OD=a2.

Khi đó HD.GB=OB.OD = a2a2=2a2 = 2aa=ADBM

Vì HD.GB = AD.BM nên HDBM=ADBG

Xét ∆DHA và ∆BMG có:

HDA^=MBG^=90° và HDBM=ADBG

Suy ra ∆DHA ᔕ ∆BMG (c.g.c).

Do đó AHD^=M1^ (hai góc tương ứng)

Mà AHD^=BAH^ (hai góc so le trong do AB // CD).

Suy ra M1^=BAH^

Mà M1^ và BAH^ ở vị trí đồng vị nên MG // AH.

Đánh giá

0

0 đánh giá