Giải Toán 8 trang 71 Tập 1 Chân trời sáng tạo

327

Với lời giải Toán 8 trang 71 Tập 1 chi tiết trong Bài 3: Hình thang – Hình thang cân sách Chân trời sáng tạo giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 8. Mời các bạn đón xem:

Giải Toán 8 Bài 3: Hình thang – Hình thang cân

Thực hành 3 trang 71 Toán 8 Tập 1: Sử dụng thước đo góc và thước đo độ dài để tìm hình thang cân trong các tứ giác ở Hình 12.

Thực hành 3 trang 71 Toán 8 Tập 1 Chân trời sáng tạo | Giải Toán 8

Lời giải:

Dùng thước đo góc và thước đo độ dài ta xác định được:

• Hình 12a) có AB // DC nên tứ giác ABCD là hình thang, ta đo được ADC^=BCD^ nên hình thang ABCD là hình thang cân.

• Hình 12b) có ST // VU nên tứ giác STUV là hình thang, ta đo được V^U^ nên hình thang STUV không phải là hình thang cân.

• Hình 12c) có EH // FG nên tứ giác EFGH là hình thang, ta đo được EG = HF nên hình thang EFGH là hình thang cân.

• Hình 12d) có MN // QP (do có cặp góc so le trong bằng nhau NMP^=MPQ^) nên tứ giác MNPQ là hình thang, ta đo được MQP^NPQ^ nên hình thang MNPQ không phải là hình thang cân.

Vận dụng 4 trang 71 Toán 8 Tập 1: Mặt cắt của một li giấy đựng bỏng ngô có dạng hình thang cân MNPQ (Hình 13) với hai đáy MN = 6 cm, PQ = 10 cm và độ dài hai đường chéo MP = NQ = 82 cm. Tính độ dài đường cao và cạnh bên của hình thang.

Vận dụng 4 trang 71 Toán 8 Tập 1 Chân trời sáng tạo | Giải Toán 8

Lời giải:

Vận dụng 4 trang 71 Toán 8 Tập 1 Chân trời sáng tạo | Giải Toán 8

• MNPQ là hình thang cân nên MN // QP; MQ = NP; MQP^=NPQ^ (tính chất hình thang cân).

• Ta có: MN // QP (chứng minh trên) và NK ⊥ QP (giả thiết)

Suy ra NK ⊥ MN hay MNK^=90°.

Xét DMHK và DKNM có:

MHK^=KNM^=90°;

MK là cạnh huyền chung;

MKH^=KMN^ (hai góc so le trong của QP // MN).

Do đó DMHK = DKNM (cạnh huyền – góc nhọn)

Suy ra HK = NM = 6 cm (hai cạnh tương ứng).

• Xét DMHQ và DNKP có:

MHQ^=NKP^=90°;

MQ = NP (chứng minh trên);

MQH^=NPK^ (chứng minh trên).

Do đó DMHQ = DNKP (cạnh huyền – góc nhọn).

Suy ra QH = PK (hai cạnh tương ứng).

Mà QH + HK + PK = QP

Hay 2QH = QP – HK

Khi đó QH = PK = QPHK2=1062=2cm 

Nên HP = HK + KP = 6 + 2 = 8 (cm).

• Áp dụng định lí Pythagore vào DMHP vuông tại H, ta có:

MP2 = MH2 + HP2

Suy ra MH2 = MP2 – HP2 = 82282=12864=64=82

Do đó MH = 8 cm.

Áp dụng định lí Pythagore vào DMHQ vuông tại H, ta có:

MQ2 = MH2 + HQ2 = 82 + 22 = 64 + 4 = 68

Suy ra MQ=217 (cm).

Vậy hình thang cân MNPQ có độ dài đường cao là MH = NK = 8 cm; độ dài cạnh bên là MQ = NP = 217 cm.

Bài tập

Bài 1 trang 71 Toán 8 Tập 1: Tìm x và y ở các hình sau.

Bài 1 trang 71 Toán 8 Tập 1 Chân trời sáng tạo | Giải Toán 8

Lời giải:

• Hình 14a):

Ta có AB // DC nên tứ giác ABCD là hình thang

Do đó B^+C^=180°

Suy ra x=C^=180°B^=180°140°=40°.

• Hình 14b):

Ta có MN // PQ nên tứ giác MNPQ là hình thang

Do đó M^+Q^=180°

Suy ra M^=180°Q^=180°60°=120°

Do MN // PQ nên  (hai góc so le trong).

• Hình 14c):

Ta có HG // IK nên tứ giác GHIK là hình thang.

Do đó x+4x=180°2x+3x=180°

Hay 5x = 180° nên x = 36°.

• Hình 14d):

Ta có VS ⊥ ST và UT ⊥ ST nên VS // UT.

Do đó tứ giác STUV là hình thang

Suy ra V^+U^=180°

Nên 2x + x  = 180° hay 3x = 180°, suy ra x = 60°.

Bài 2 trang 71 Toán 8 Tập 1: Cho tứ giác ABCD có AB = AD, BD là tia phân giác của góc B. Chứng minh rằng ABCD là hình thang.

Lời giải:

Bài 2 trang 71 Toán 8 Tập 1 Chân trời sáng tạo | Giải Toán 8

Xét DABD có AB = AD nên là tam giác cân tại A

Suy ra ABD^=ADB^ (tính chất tam giác cân)

Vì BD là tia phân giác của góc B nên ABD^=CBD^ (tính chất tia phân giác của một góc)

Suy ra CBD^=ADB^=ABD^

Mà hai góc này ở vị trí so le trong nên AD // BC.

Xét tứ giác ABCD có AD // BC nên là hình thang.

Vậy ABCD là hình thang.

Đánh giá

0

0 đánh giá