Xét tính tăng, giảm và bị chặn của dãy số (un) với un = 1+1/2^2+1/3^2+...+1/n^2

471

Với giải Bài 7 trang 58 SBT Toán lớp 11 Chân trời sáng tạo chi tiết trong Bài 1: Dãy số giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 11. Mời các bạn đón xem:

Giải SBT Toán 11 Bài 1: Dãy số

Bài 7 trang 58 SBT Toán 11 Tập 1: Xét tính tăng, giảm và bị chặn của dãy số (un) với un=1+122+132++1n2.

Lời giải:

Ta có: un=1+122+132++1n2;un+1=1+122+132++1n2+1n+12

Suy ra un+1un=1n+12>0,n*. Suy ra (un) là dãy số tăng.

Do un<1+112+123++1n1n=21n, suy ra 1 < un < 2, ∀n ∈ ℕ*.

Suy ra (un) là dãy số bị chặn.

Đánh giá

0

0 đánh giá