Giải SBT Toán 11 trang 58 Tập 1 Chân trời sáng tạo

198

Với lời giải SBT Toán 11 trang 58 Tập 1 chi tiết trong Bài 1: Dãy số sách Chân trời sáng tạo giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 11. Mời các bạn đón xem:

Giải SBT Toán 11 Bài 1: Dãy số

Bài 5 trang 58 SBT Toán 11 Tập 1: Xét tính tăng, giảm và bị chặn của dãy số (un) cho bởi số hạng tổng quát un sau:

a) un=2n133n2;

b) un=n2+3n+1n+1;

c) un=11+n+n2.

Lời giải:

a) Số hạng tổng quát của (un) là un=2n133n2 nên un+1=2n+1133n+12=2n113n+1

Xét un+1un=2n113n+12n133n2

=2n113n22n133n+13n+13n2

=6n237n+226n237n133n+13n2

=353n+13n2>0,n*.

Suy ra un+1 > un, ∀n ∈ ℕ*. Suy ra (un) là dãy số tăng.

Mặt khác, ta có: un=2n133n2=233n23533n2=233533n2

⦁ Do n13n213533n2353233533n223353=11

⦁ Do n13n21>03533n2>0233533n2<23

Suy ra 11un<23,n*, suy ra (un) là dãy số bị chặn.

b) Số hạng tổng quát của (un) là un=n2+3n+1n+1

Nên un+1=n+12+3n+1+1n+1+1=n2+5n+5n+2

 un+1un=n2+5n+5n+2n2+3n+1n+1

 =n2+5n+5n+1n2+3n+1n+2n+1n+2

 =n3+n2+5n2+5n+5n+5n3+2n2+3n2+6n+n+2n+1n+2

 =n2+3n+3n+1n+2>0,n*

Suy ra un+1 > un, ∀n ∈ ℕ*. Suy ra (un) là dãy số tăng.

Mặt khác, ta có un>n2+2n+1n+1=n+12,n*. Suy ra (un) là dãy số bị chặn dưới.

c) Số hạng tổng quát của (un) là un=11+n+n2

Nên un+1=11+n+1+n+12=1n2+3n+3

Ta có un > 0, ∀n ∈ ℕ* nên un+1un=1n2+3n+31n2+n+1=n2+n+1n2+3n+3<1,n*

Suy ra un+1 < un, ∀n ∈ ℕ*. Suy ra (un) là dãy số giảm.

Mặt khác, ta có n1;  n21  1+n+n2311+n+n213 0<un13,n*. Suy ra (un) là dãy số bị chặn.

Bài 6 trang 58 SBT Toán 11 Tập 1: Xét tính tăng, giảm của các dãy số (un) cho bởi số hạng tổng quát un sau:

a) un=nn21;

b) un=n+1nn2;

c) un=3n12n.

Lời giải:

a) Ta có:

 un+1un=n+1n+121n+n21

 =1n+121n21<0,n*

Suy ra un+1 < un

Do đó un là dãy số giảm.

b) Xét un=n+1nn2, ta có: u1=0;u2=34;u3=29, suy ra u2>u1u3<u2.

Do đó, (un) là dãy số không tăng, không giảm.

c) Ta có:

un+1 - un 3n+112n+13n12n=3.3n12.2n3n12n

          =3.3n123n12.2n=3.3n12.3n+22.2n

          =3n+12n+1>0,  n*.

Do đó, (un) là dãy số tăng.

Bài 7 trang 58 SBT Toán 11 Tập 1: Xét tính tăng, giảm và bị chặn của dãy số (un) với un=1+122+132++1n2.

Lời giải:

Ta có:

 un=1+122+132++1n2;un+1=1+122+132++1n2+1n+12

Suy ra un+1un=1n+12>0,n*. Suy ra (un) là dãy số tăng.

Ta có: un=1+122+132++1n2, suy ra un > 1 ∀n ∈ N*. (1)

Hơn nữa: 
un=1+122+132++1n2<1+112+123++1n1n,  n*.

Ta có: 1+112+123++1n1n

            =1+1112+1213+...+1n11n

            =1+1112+1213+...+1n11n

            =1+11n=21n

Do đó un<21n, nên un < 2, ∀n ∈ ℕ*. (2)

Từ (1) và (2) ta có 1 < un < 2, ∀n ∈ ℕ*.

Suy ra (un) là dãy số bị chặn.

Đánh giá

0

0 đánh giá