Cho cos alpha = 1/61và -pi/2 < alpha < 0 tính giá trị của cac biểu thức sau

809

Với giải Bài 2 trang 19 SBT Toán lớp 11 Chân trời sáng tạo chi tiết trong Bài 3: Các công thức lượng giác giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 11. Mời các bạn đón xem:

Giải SBT Toán 11 Bài 3: Các công thức lượng giác

Bài 2 trang 19 SBT Toán 11 Tập 1: Cho cosα=1161 và π2<α<0, tính giá trị của cac biểu thức sau:

a) sinπ6α;

b) cotα+π4;

c) cos2α+π3;

d) tan3π42α

Lời giải:

a) Vì π2<α<0 nên sinα < 0.

Do đó, sinα=1cos2α=111612=6061.

Suy ra

sinπ6α=sinπ6cosαcosπ6sinα=121161326061=11+603122

b) Ta có tanα=sinαcosα=60611161=6011.

Do đó cotα+π4=1tanα+π4=1tanαtanπ4tanα+tanπ4=1601116011+1=7149.

c) Ta có: cos2α=2cos2α1=2116121=34793721

sin2α=2sinαcosα=260611161=13203721.

Suy ra: 

cos2α+π3=cos2αcosπ3sin2αsinπ3=34793721121320372132

=3479+132037442

d) Ta có tan2α=sin2αcos2α=1320372134793721=13203479.

Suy ra: tan3π42α=tan3π4tan2α1+tan3π4tan2α=1132034791+113203479=47992159.

Đánh giá

0

0 đánh giá