a) Cho tứ giác ABCD có AB // CD, góc B = 135 độ, góc D = 70 độ, góc ACB = 25 độ (Hình 8a)

1.4 K

Với giải Bài 8 trang 90 SBT Toán lớp 8 Cánh diều chi tiết trong Bài 2: Tứ giác  giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 8. Mời các bạn đón xem:

Giải SBT Toán 8 Bài 2: Tứ giác

Bài 8 trang 90 SBT Toán 8 Tập 1: a) Cho tứ giác ABCD  AB//CD,B^=135,D^=70,ACB^=25 (Hình 8a). Tính số đo góc DAC.

 Sách bài tập Toán 8 Bài 2 (Cánh diều): Tứ giác (ảnh 3)

b) Cho tứ giác GHIK  KGH^=K^=90,I^=65. Trên HI lấy điểm E sao cho EGH^=25 (Hình 8b). Tính số đo góc GEI.

 Sách bài tập Toán 8 Bài 2 (Cánh diều): Tứ giác (ảnh 4)

c) Cho tứ giác MNPQ  PM là tia phân giác của góc NPQ,QMN^=110,N^=120,Q^=60 (Hình 8c). Tính các số đo góc NPM,MPQ,QMP.

 Sách bài tập Toán 8 Bài 2 (Cánh diều): Tứ giác (ảnh 5)

Lời giải:

a)  Trong tam giác ABC, ta có: BAC^=180(B^+BCA^)=20

Do AB//CD nên ACD^=BAC^=20 (hai góc so le trong)

Trong tam giác ACD, ta có: DAC^=180(ACD^+D^)=90

b) Trong tứ giác GHIK, ta có: H^=360(KGH^+I^+K^)=115

Trong tam giác GHE, ta có: HEG^=180(EGH^+H^)=40

Vậy GEI^=180HEG^=140

c) Trong tứ giác MNPQ, ta có: NPQ^=360(QMN^+N^+Q^)=70

Do PM là tia phân giác của góc NPQ nên NPM^=MPQ^=NPQ^2=35

Trong tam giác MPQ, ta có: QMP^=180(MPQ^+Q^)=85

Đánh giá

0

0 đánh giá