Sách bài tập Toán 7 Bài 8 (Kết nối tri thức): Góc ở vị trí đặc biệt. Tia phân giác của một góc

6.3 K

Với giải sách bài tập Toán 7 Bài 8: Góc ở vị trí đặc biệt. Tia phân giác của một góc sách Kết nối tri thức hay, chi tiết giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 7. Mời các bạn đón xem:

Giải SBT Bài 8: Góc ở vị trí đặc biệt. Tia phân giác của một góc

Giải SBT Toán 7 trang 36 Tập 1

Bài 3.1 trang 36 Toán 7 Tập 1: Cho Hình 3.4, kể tên các cặp góc kề bù.

Sách bài tập Toán 7 Bài 8: Góc ở vị trí đặc biệt. Tia phân giác của một góc - Kết nối tri thức (ảnh 1)

Lời giải:

Các cặp góc kề bù có trong hình là:

Hình 3.4a: xHz^ và yHz^

Hình 3.4b: EID^ và FID^.

Giải SBT Toán 7 trang 37 Tập 1

Bài 3.2 trang 37 Toán 7 Tập 1: Cho Hình 3.5

Sách bài tập Toán 7 Bài 8: Góc ở vị trí đặc biệt. Tia phân giác của một góc - Kết nối tri thức (ảnh 1)

a) Gọi tên các cặp góc đối đỉnh.

b) Gọi tên góc kề bù với AOD^.

Lời giải:

a) Các cặp góc đối đỉnh là: AOB^ và DOC^;  AOD^ và BOC^.

b) Góc kề bù với góc AOD^ là góc AOB^ và COD^.

Bài 3.3 trang 37 Toán 7 Tập 1: Vẽ hai đường thẳng xy và mn cắt nhau tại điểm O sao cho xOm^=120°. Tính các góc mOy^;yOn^;xOn^.

Lời giải:

Sách bài tập Toán 7 Bài 8: Góc ở vị trí đặc biệt. Tia phân giác của một góc - Kết nối tri thức (ảnh 1)

Vì góc xOm^ và góc nOy^ là hai góc đối đỉnh nên xOm^=nOy^=120° 

Vì góc xOn^ và góc nOy^ là hai góc kề bù nên xOn^ xOm^=180°

xOn^ 120°=180°

xOn^ = 180o – 120o

xOn^ = 60o.

Mà xOn^ và yOm^ đối đỉnh nên xOn^ yOm^ = 60o.

Bài 3.4 trang 37 Toán 7 Tập 1: Vẽ xAm^=50°. Vẽ tia phân giác An của xAm^.

a) Tính xAn^.

b) Vẽ tia Ay là tia đối của tia An. Tính mAy^.

Lời giải:

Sách bài tập Toán 7 Bài 8: Góc ở vị trí đặc biệt. Tia phân giác của một góc - Kết nối tri thức (ảnh 1)

a) Vì An là tia phân giác của góc xAm^ nên xAn^=mAn^=xAM^2=50°2=25°.

b) Vì tia Ay là tia đối của tia An nên yAn^=180°

Do đó, nAm^ và góc mAy^ là hai góc kề bù.

Ta có:

nAm^ mAy^ = 180o

25o + mAy^ = 180o

mAy^ = 180o – 25o

mAy^ = 155o.

Vậy mAy^ = 155o.

Bài 3.5 trang 37 Toán 7 Tập 1: Cho Hình 3.6. Biết tia Oz là tia phân giác của xOy^. Tính xOy^

Sách bài tập Toán 7 Bài 8: Góc ở vị trí đặc biệt. Tia phân giác của một góc - Kết nối tri thức (ảnh 1)

Lời giải:

Vì Oz là tia phân giác của góc xOy^ nên xOz^=zOy^=xOy^2=55°.

Do đó, xOy^=55°.2=110°.

Vậy xOy^=110°.

Bài 3.6 trang 37 Toán 7 Tập 1: Vẽ xAy^=40°. Vẽ yAz^ là góc kề bù với xAy^.

Lời giải:

Sách bài tập Toán 7 Bài 8: Góc ở vị trí đặc biệt. Tia phân giác của một góc - Kết nối tri thức (ảnh 1)

Bài 3.7 trang 37 Toán 7 Tập 1: Cho góc bẹt xOy. Vẽ tia Oz sao cho xOz^=60°. Vẽ tia Om là tia phân giác của góc xOz. Vẽ tia On là tia phân giác của góc zOy.

a) Tính số đo góc xOm.

b) Tính số đo góc yOn.

c) Tính số đo góc mOn.

Lời giải:

Sách bài tập Toán 7 Bài 8: Góc ở vị trí đặc biệt. Tia phân giác của một góc - Kết nối tri thức (ảnh 1)

a) Vì Om là tia phân giác của góc xOz^ nên xOm^=mOz^=xOz^2=60°2=30°

Vậy xOm^=30°.

b) Vì góc xOz^ và yOz^ là hai góc kề bù nên:

xOz^ yOz^ = 180o

60o + yOz^ = 1800

yOz^ = 180o – 600

yOz^ = 120o

Lại có: On là tia phân giác của góc yOz^, do đó:

yOn^=nOz^=yOz^2=120°2=60°

Vậy yOn^=60°.

c) Ta có: mOn^=mOz^+zOn^

mOn^=30°+60°=90°

Vậy mOn^=90°.

Bài 3.8 trang 37 Toán 7 Tập 1: Vẽ xOy^=60°. Vẽ tia Oz là tia đối của tia Ox. Vẽ tia Om là tia phân giác của góc zOy.

a) Tính zOm^.

b) Vẽ tia On là tia đối của tia Om. Tia Ox có phải là tia phân giác của góc yOn không? Vì sao?

Lời giải:

Sách bài tập Toán 7 Bài 8: Góc ở vị trí đặc biệt. Tia phân giác của một góc - Kết nối tri thức (ảnh 1)

a) Vì Oz và Ox là hai tia đối nhau nên zOx^=180°. Do đó, zOy^ và yOx^ là hai góc kề bù.

zOy^ xOy^ = 180o

zOy^ + 60o = 180o

zOy^ = 180o – 60o

zOy^ = 120o.

Mà Om là tia phân giác của góc zOy^ nên ta có:

zOm^=mOy^=zOy^2=120°2=60°

Vậy zOm^ = 60o.

b) Vì On là tia đối của  tia Om và Oz là tia đối của tia Ox nên mOz^;nOx^ đối đỉnh.

Suy ra,

mOz^=nOx^ = 60o.

Ta có: Ox nằm giữa hai tia Oy và On;

xOy^=nOx^ = 60o.

Do đó, Ox là tia phân giác của góc yOn^.

Xem thêm các bài giải SBT Toán lớp 7 Kết nối tri thức hay, chi tiết khác:

Ôn tập chương 2

Bài 8: Góc ở vị trí đặc biệt. Tia phân giác của một góc

Bài 9: Hai đường thẳng song song và dấu hiệu nhận biết

Bài 10: Tiên đề Euclid. Tính chất của hai đường thẳng song song

Bài 11: Định lí và chứng minh định lí

Lý thuyết Góc ở vị trí đặc biệt. Tia phân giác của một góc

1. Góc ở vị trí đặc biệt

a) Hai góc kề bù

• Định nghĩa: Hai góc có một cạnh chung, hai cạnh còn lại là hai tia đối nhau được gọi là hai góc kề bù.

• Tính chất: Hai góc kề bù có tổng số đo bằng 180°.

Ví dụ:

+ Góc xOy^ và yOz^ có cạnh Oy chung; Ox và Oz là hai tia đối nhau. Do đó xOy^ và yOz^ được gọi là hai góc kề bù.

Góc ở vị trí đặc biệt. Tia phân giác của một góc (Lý thuyết + Bài tập Toán lớp 7) – Kết nối tri thức (ảnh 1)

+ Vì xOy^ và yOz^ là hai góc kề bù nên xOy^+yOz^=180°.

Chú ý:

• Hai góc kề bù được hiểu là hai góc vừa kề nhau, vừa bù nhau. Trong đó:

- Hai góc kề nhau là hai góc có một cạnh chung và hai cạnh còn lại nằm khác phía nhau đối với đường thẳng chứa cạnh chung đó.

Ví dụ: Trong hình vẽ dưới đây, góc mOt và góc nOt là hai góc kề nhau.

Góc ở vị trí đặc biệt. Tia phân giác của một góc (Lý thuyết + Bài tập Toán lớp 7) – Kết nối tri thức (ảnh 1)

- Hai góc bù nhau là hai góc có tổng số đo bằng 180°.

Ví dụ: Trong hình vẽ dưới đây, có ABC^+BCD^=60°+120°=180°. Ta nói ABC^ và BCD^ là hai góc bù nhau.

Góc ở vị trí đặc biệt. Tia phân giác của một góc (Lý thuyết + Bài tập Toán lớp 7) – Kết nối tri thức (ảnh 1)

• Nếu điểm M nằm trong góc xOy thì ta nói tia OM nằm giữa hai cạnh (hai tia) Ox và Oy của góc xOy. Khi đó ta có: xOM^+MOy^=xOy^

Góc ở vị trí đặc biệt. Tia phân giác của một góc (Lý thuyết + Bài tập Toán lớp 7) – Kết nối tri thức (ảnh 1)

b) Hai góc đối đỉnh

• Định nghĩa: Hai góc đối đỉnh là hai góc mà mỗi cạnh của góc này là tia đối của một cạnh của góc kia.

• Tính chất: Hai góc đối đỉnh thì bằng nhau.

Ví dụ:

Hai đường thẳng xx'yy' cắt nhau tại O. Khi đó Ox và Ox' là hai tia đối nhau; Oy và Oy' là hai tia đối nhau. Nên ta có các cặp góc đối đỉnh là: xOy^ và x'Oy'^xOy'^ và x'Oy^.

Góc ở vị trí đặc biệt. Tia phân giác của một góc (Lý thuyết + Bài tập Toán lớp 7) – Kết nối tri thức (ảnh 1)

+ Có xOy^ và x'Oy'^ là hai góc đối đỉnh thì xOy^=x'Oy'^;

Ta lại có xOy'^ và x'Oy^ là hai góc đối đỉnh thì xOy'^=x'Oy^.

Chú ý:

• Hai đường thẳng xx'yy' cắt nhau và trong các góc tạo thành có một góc vuông được gọi là hai đường thẳng vuông góc. Kí hiệu là: xx'yy'.

Ví dụ: Hai đường thẳng xx'yy' cắt nhau tại O sao cho xOy^=90° thì xx'yy'.

Góc ở vị trí đặc biệt. Tia phân giác của một góc (Lý thuyết + Bài tập Toán lớp 7) – Kết nối tri thức (ảnh 1)

2. Tia phân giác của một góc

• Định nghĩa: Tia nằm giữa hai cạnh của một góc và tạo với hai cạnh ấy hai góc bằng nhau được gọi là tia phân giác của góc đó.

• Tính chất: Khi Oz là tia phân giác của góc xOy thì xOz^=yOz^=12xOy^.

• Đường thẳng chứa tia phân giác của một góc gọi là đường phân giác của góc đó.

Ví dụ:

+ Cho xOy^=80° và Oz là tia phân giác của góc xOy. Khi đó ta có:

xOz^=yOz^=12xOy^=1280°=40°

Góc ở vị trí đặc biệt. Tia phân giác của một góc (Lý thuyết + Bài tập Toán lớp 7) – Kết nối tri thức (ảnh 1)

Chú ý:

• Cách vẽ tia phân giác của một góc:

Chẳng hạn: Vẽ tia phân giác Oz của xOy^=80°

+ Vẽ góc xOy^=80°.

Góc ở vị trí đặc biệt. Tia phân giác của một góc (Lý thuyết + Bài tập Toán lớp 7) – Kết nối tri thức (ảnh 1)

+ Oz là tia phân giác của góc xOy nên yOz^=12xOy^=1280°=40°. Đánh dấu điểm ứng với vạch 40° của thước đo góc.

Góc ở vị trí đặc biệt. Tia phân giác của một góc (Lý thuyết + Bài tập Toán lớp 7) – Kết nối tri thức (ảnh 1)

+ Kẻ Oz đi qua điểm đã đánh dấu. Ta được Oz là tia phân giác xOy^.

Góc ở vị trí đặc biệt. Tia phân giác của một góc (Lý thuyết + Bài tập Toán lớp 7) – Kết nối tri thức (ảnh 1)

Đánh giá

0

0 đánh giá