50 bài tập Những hằng đẳng thức đáng nhớ (có đáp án) - Toán 8

Tải xuống 59 4.4 K 154

Tailieumoi.vn xin giới thiệu Bài tập Toán 8 Chương 1 Bài 3: Những hằng đẳng thức đáng nhớ. Bài viết gồm 50 bài tập với đầy đủ các mức độ và có hướng dẫn giải chi tiết sẽ giúp học sinh ôn luyện kiến thức và rèn luyện kĩ năng làm bài tập Toán 8. Ngoài ra, bài viết còn có phần tóm tắt nội dung chính lý thuyết Chương 1 Bài 3: Những hằng đẳng thức đáng nhớ. Mời các bạn đón xem:

Bài tập Toán 8 Chương 1 Bài 3: Những hằng đẳng thức đáng nhớ

A. Bài tập Những hằng đẳng thức đáng nhớ

I. Bài tập trắc nghiệm

Bài 1: Điền vào chỗ trống: A = (12x - y )2 = 14x2 - ... + y2

A. 2xy   

B. xy

C. - 2xy   

D. 12 xy

Lời giải:

Áp dụng hằng đẳng thức (a - b)2 = a2 - 2ab + b2.

Khi đó ta có A = ( 12x - y )2 = 14x2 - 2.12x.y + y2 = 14x2 - xy + y2.

Suy ra chỗ trống cần điền là xy.

Chọn đáp án B.

Bài 2: Giá trị của x thỏa mãn 2x2 - 4x + 2 = 0 là ?

A. x = 1.   

B. x = - 1.

C. x = 2.   

D. x = - 2.

Lời giải:

Ta có 2x2 - 4x + 2 = 0

⇔ 2( x2 - 2x + 1 ) = 0        ( 1 )

Áp dụng hằng đẳng thức ( a - b )2 = a2 - 2ab + b2

Khi đó ta có ( 1 ) ⇔ 2( x - 1 )2 = 0

⇔ x - 1 = 0

⇔ x = 1.

Chọn đáp án A.

Bài 3: Bài tập Những hằng đẳng thức đáng nhớ | Lý thuyết và Bài tập Toán 8 có đáp án

Bài tập Những hằng đẳng thức đáng nhớ | Lý thuyết và Bài tập Toán 8 có đáp án

Lời giải:

Áp dụng hằng đẳng thức đáng nhớ: Bài tập Những hằng đẳng thức đáng nhớ | Lý thuyết và Bài tập Toán 8 có đáp án

Ta được:

Bài tập Những hằng đẳng thức đáng nhớ | Lý thuyết và Bài tập Toán 8 có đáp án

Chọn đáp án A

Bài 4: Rút gọn biểu thức: A = (x – 2y).(x2 + 2xy + y2) - (x + 2y). (x2 – 2xy + y2)

A. 2x3    

B. -16y3

C. 16y3    

D. –2x3

Lời giải:

Áp dụng hằng đẳng thức:

a3 – b3 = (a – b).(a2 + ab + b2) và a3 + b3 = (a + b).(a2 – ab + b2) ta được:

A = (x – 2y). (x2 + 2xy + y2) - (x + 2y). (x2 – 2xy + y2)

A = x3 – (2y)3 - [x3 + (2y)3]

A = x3 – 8y3 – x3 – 8y3 = -16y3

Chọn đáp án B

Bài 5: Rút gọn biểu thức A = (x + 2y ).(x - 2y) - (x – 2y)2

A. 2x2 + 4xy    

B. – 8y2 + 4xy

C. - 8y2    

D. – 6y2 + 2xy

Lời giải:

Ta có: A = (x + 2y ). (x - 2y) - (x – 2y)2

A = x2 – (2y)2 – [x2 – 2.x.2y +(2y)2 ]

A = x2 – 4y2 – x2 + 4xy - 4y22

A = -8y2 + 4xy

Chọn đáp án B

Bài 6: Chọn câu đúng

A. (c + d)2 – (a + b)2 = (c + d + a + b)(c + d – a + b)

B. (c – d)2 – (a + b)2 = (c – d + a + b)(c – d – a + b)

C. (a + b + c – d)(a + b – c + d) = (a + b)2 – (c – d)2

D. (c – d)2 – (a – b)2 = (c – d + a – b)(c – d – a – b)

Lời giải:

Ta có:

(c + d)2 – (a + b)2 = (c + d + a + b)(c + d – (a + b)) = (c + d + a + b)(c + d – a – b) nên A sai

(c – d)2 – (a + b)2 = (c – d + a + b)[c – d – (a + b)] = (c – d + a + b)(c – d – a – b) nên B sai

(c – d)2 – (a – b)2 = (c – d + a – b)(c – d – (a – b)) = (c – d + a – b)(c – d – a + b) nên D sai

(a + b + c – d)(a + b – c + d) = [(a + b) + (c – d)][(a + b) – (c – d)] = (a + b)2 – (c – d)2 nên C đúng

Đáp án cần chọn là: C

Bài 7: Chọn câu đúng

A. 4 – (a + b)2 = (2 + a + b)(2 – a + b)

B. 4 – (a + b)2 = (4 + a + b)(4 – a – b)

C. 4 – (a + b)2 = (2 + a – b)(2 – a + b)

D. 4 – (a + b)2 = (2 + a + b)(2 – a – b)

Lời giải

Ta có 4 – (a + b)2 = 22 – (a + b)2 

= (2 + a + b)[2 – (a + b)]

= (2 + a + b)(2 – a – b)

Đáp án cần chọn là: D

Bài 8: Rút gọn biểu thức A = (3x – 1)2 – 9x(x + 1) ta được

A. -15x + 1 

B. 1            

C. 15x + 1            

D. – 1

Lời giải: Ta có

A = (3x – 1)2 – 9x(x + 1)

= (3x)2 – 2.3x.1 + 1 – (9x.x + 9x)

= 9x2 – 6x + 1 – 9x2 – 9x

 = -15x + 1

Đáp án cần chọn là: A

Bài 9: Rút gọn biểu thức A = 5(x + 4)2 + 4(x – 5)2 – 9(4 + x)(x – 4), ta được:

A. 342     

B. 243    

C. 324   

D. -324

Lời giải

Ta có

A = 5(x + 4)2 + 4(x – 5)2 – 9(4 + x)(x – 4)

= 5(x2 + 2.x.4 + 16) + 4(x2 – 2.x.5 + 52) – 9(x2 – 42)

= 5(x2 + 8x + 16) + 4(x2 – 10x + 25) – 9(x2 – 42)

= 5x2 + 40x + 80 + 4x2 – 40x + 100 – 9x2 + 144

= (5x2 + 4x2 – 9x2) + (40x – 40x) + (80 +100 + 144)

= 324

Đáp án cần chọn là: C

Bài 10: Rút gọn biểu thức B = (2a – 3)(a + 1) – (a – 4)2 – a(a + 7) ta được

A. 0            

B. 1            

C. 19          

D. – 19

Lời giải

B = (2a – 3)(a + 1) – (a – 4)2 – a(a + 7)

= 2a2 + 2a – 3a – 3 – (a2 – 8a + 16) – (a2 + 7a)

= 2a2 + 2a – 3a – 3 – a2 + 8a – 16 – a2 – 7a

= - 19

Đáp án cần chọn là: D

Bài 11: Cho B = (x2 + 3)2 – x2(x2 + 3) – 3(x + 1)(x – 1). Chọn câu đúng.

A. B < 12   

B. B > 13   

C. 12 < B< 14

D. 11 < B < 13

Lời giải

B = (x2 + 3)2 – x2(x2 + 3) – 3(x + 1)(x – 1).

= (x2)2 +2.x2.4 + 32 – (x2.x2 + x2.3) – 3(x2 – 1)       

= x4 + 6x2 + 9 – x4 – 3x2 – 3x2 + 3 = 12

Đáp án cần chọn là: D

Bài 12: Cho Trắc nghiệm Những hằng đẳng thức đáng nhớ có đáp án. Tìm mối quan hệ giữa C và D.

A. D = 14C + 1

B. D = 14C 

C. D = 14C – 1

D. D = 14C – 2

Lời giải

Ta có:

Trắc nghiệm Những hằng đẳng thức đáng nhớ có đáp án

Vậy D = 29; C = 2 suy ra D = 14C + 1 (do 29 = 14.2 + 1)

Đáp án cần chọn là: A

Bài 13: Cho M = 4(x + 1)2 +  (2x + 1)2 – 8(x – 1)(x + 1) – 12x và N = 2(x – 1)2 – 4(3 + x)2 + 2x(x + 14).

Tìm mối quan hệ giữa M và N

A. 2N – M = 60

B. 2M – N = 60

C. M> 0, N < 0

D. M > 0, N > 0

Lời giải

Ta có

M = 4(x + 1)2 +  (2x + 1)2 – 8(x – 1)(x + 1) – 12

= 4(x2 + 2x + 1) + (4x2 + 4x + 1) – 8(x2 – 1) – 12x

= 4x2 + 8x + 4 + 4x2 + 4x + 1 – 8x2 +8 – 12x

= (4x2 + 4x2 – 8x2) + (8x + 4x – 12x) + 4 + 1 +8

= 13

N = 2(x – 1)2 – 4(3 + x)2 + 2x(x + 14)

= 2(x2 – 2x + 1) – 4(9 + 6x + x2) + 2x2 + 28x

= 2x2 – 4x + 2 – 36 – 24x – 4x2 + 2x2 + 28x

= (2x2 +2x2 – 4x2) + (-4x – 24x + 28x) + 2 – 36

= -34

Suy ra M = 13, N = -34 ⇔ 2M – N = 60

Đáp án cần chọn là: B

Bài 14: Có bao nhiêu giá trị x thỏa mãn (2x – 1)2 – (5x – 5)2 = 0

A. 0            

B. 1            

C. 2            

D. 3

Lời giải

Trắc nghiệm Những hằng đẳng thức đáng nhớ có đáp án

Vậy có hai giá trị của x thỏa mãn yêu cầu

Đáp án cần chọn là: C

Bài 15: Có bao nhiêu giá trị x thỏa mãn (2x + 1)2 – 4(x + 3)2 = 0

A. 0            

B. 1            

C. 2            

D. 3

Lời giải

Ta có:

Trắc nghiệm Những hằng đẳng thức đáng nhớ có đáp án

Vậy có một giá trị của x thỏa mãn yêu cầu.

Đáp án cần chọn là: B

II. Bài tập tự luận

Bài 1: Viết các biểu thức sau dưới dạng bình phương của một tổng hoặc một hiệu:

a, 4{x^2} + 4x + 1 b, 9{x^2} - 12x + 4
c, 25{a^2} + 16{b^2} - 40ab d, {x^2} - 3x + \frac{9}{4}
e, {\left( {x + 2} \right)^2} - 2.\left( {x + 2} \right) + 1 f, {\left( {{x^2} - 2x + 1} \right)^2} - 2.{\left( {x + 1} \right)^2}.4 + 16

Lời giải:

a, 4{x^2} + 4x + 1 = {\left( {2x} \right)^2} + 2.2x.1 + 1 = {\left( {2x + 1} \right)^2}

b, 9{x^2} - 12x + 4 = {\left( {3x} \right)^2} - 2.3x.2 + {2^2} = {\left( {3x - 2} \right)^2}

c, 25{a^2} + 16{b^2} - 40ab = {\left( {5a} \right)^2} - 2.5a.4b + {\left( {4b} \right)^2} = {\left( {5a - 4b} \right)^2}

d,  {x^2} - 3x + \frac{9}{4} = {x^2} - 2.\frac{3}{2}.x + {\left( {\frac{3}{2}} \right)^2} = {\left( {x - \frac{3}{2}} \right)^2}

e, {\left( {x + 2} \right)^2} - 2.\left( {x + 2} \right) + 1 = {\left( {x + 2 - 1} \right)^2} = {\left( {x + 1} \right)^2}

f, \begin{array}{l}
{\left( {{x^2} - 2x + 1} \right)^2} - 2.{\left( {x + 1} \right)^2}.4 + 16 = \left( {{x^2} - 2x + 1 - 4} \right)\\
 = \left[ {{{\left( {x - 1} \right)}^2} - 4} \right] = \left( {x - 1 - 2} \right)\left( {x - 1 + 2} \right) = \left( {x - 3} \right)\left( {x + 1} \right)
\end{array}

Bài 2: Tính giá trị của biểu thức:

a, {\left( {a + b} \right)^2} tại a = 2, b = 3

b, {\left( {a + b} \right)^2} - {\left( {a - b} \right)^2} tại a = {2^8};b = {3^{10}}

c, 24{x^2} - 480x + 2400 tại x= 5

Lời giải:

a, Thay a = 2, b = 3 vào {\left( {a + b} \right)^2} có: {\left( {2 + 3} \right)^2} = {5^2} = 25

b, Có {\left( {a + b} \right)^2} - {\left( {a - b} \right)^2} = \left( {a + b - a + b} \right)\left( {a + b + a - b} \right) = 4ab

Thay a = {2^8};b = {3^8} có: {4.2^8}{.3^{10}} = {2^2}{.2^8}{.3^{10}} = {2^{10}}{.3^{10}} = {\left( {2.3} \right)^{10}} = {6^{10}}

c, Có 24{x^2} - 480x + 2400 = 24.\left( {{x^2} - 20x + 100} \right) = 24.{\left( {x - 10} \right)^2}

Thay x = 5 có: 24.{\left( {5 - 10} \right)^2} = 24.{\left( { - 5} \right)^2} = 24.25 = 500

Bài 3: Tính:

a,  {\left( {2a + b - 3c} \right)^2}

b, {\left( {a + 2b + 3c - 4d} \right)^2}

Lời giải:

a, \begin{array}{l}
{\left( {2a + b - 3c} \right)^2} = {\left( {2a + b} \right)^2} - 2.3c.\left( {2a + b} \right) + {\left( {3c} \right)^2}\\
 = 4{a^2} + 4ab + {b^2} - 12ac - 6bc + 9{c^2}\\
 = 4{a^2} + {b^2} + 9{c^2} + 4ab - 12ac - 6bc
\end{array}

b, \begin{array}{l}
{\left( {a + 2b + 3c - 4d} \right)^2} = {\left( {a + 2b} \right)^2} + 2.\left( {a + 2b} \right).\left( {3c - 4d} \right) + {\left( {3c - 4d} \right)^2}\\
 = {a^2} + 4ab + 4{b^2} + \left( {2a + 4b} \right)\left( {3c - 4d} \right) + 9{c^2} - 24cd + 16{d^2}\\
 = {a^2} + 4ab + 4{b^2} + 6ac - 8ad + 12bc - 16bd + 9{c^2} - 24cd + 16{d^2}
\end{array}

Bài 4 

Viết các biểu thức sau dưới dạng bình phương của một tổng hoặc một hiệu:

a) x+ 2x + 1

b) 9x2 + y2 + 6xy;

c) 25a2 + 4b2 – 20ab;

d) x2 – x + 14

Đáp án và hướng dẫn giải:

a) x2 + 2x + 1 = x2+ 2.x.1 + 12

= (x + 1)2

b) 9x2 + y2+ 6xy = (3x)2 + 2.3. x.y + y.2 = (3x + y)2

c) 25a2 + 4b2– 20ab = (5a)2 – 2.5a.2b + (2b)2 = (5a – 2b)2

Hoặc 25a2 + 4b2 – 20ab = (2b)2 – 2.2b.5a + (5a)2 = (2b – 5a)2

d) x2 – x + 14

= x2 – 2.x.12+ (12)2

=(x - 12)2

Hoặc x2 – x + 14

14- x + x2 =(12)2 – 2.12 x + x= (12 - x)2

Bài 5

Chứng minh rằng:

(10a + 5)2 = 100a . (a + 1) + 25.

Từ đó em hãy nêu cách tính nhẩm bình phương của một số tự nhiên có tận cùng bằng chữ số 5.

Áp dụng để tính: 252, 352, 652, 752.

Đáp án và hướng dẫn giải:

Ta có: (10a + 5)2 = (10a)2 + 2.10a.5 + 52

= 100a2 + 100a + 25

= 100a(a + 1) + 25.

Cách tính nhẩm bình thường của một số tận cùng bằng chữ số 5;

Ta gọi a là số chục của số tự nhiên có tận cùng bằng 5 => số đã cho có dạng 10a + 5 và ta được

(10a + 5)2 = 100a(a + 1) + 25

Vậy để tính bình phương của một số tự nhiên có tận cùng bởi chữ số 5 ta tính tích a(a + 1) rồi viết 25 vào bên phải.

Áp dụng;

Để tính 25ta tính 2(2 + 1) = 6 rồi viết tiếp 25 vào bên phải ta được 625.

Để tính 352 ta tính 3(3 + 1) = 12 rồi viết tiếp 25 vào bên phải ta được 1225.

652 = (10.6 + 5)2= 100.6(6+1) +25= 600.7 +25 =4200 +25= 4225

75=(10.7+5)2 = 100.7(7+1) +25 = 700.8 +25=5600 +25 = 5625

Bài 6

Hãy tìm cách giúp bạn An khôi phục lại những hằng đẳng thức bị mực làm nhòe đi một số chỗ:

a) x2 + 6xy + … = (… + 3y)2;

b) … – 10xy + 25y2 = (… – …)2;

Hãy nêu một số đề bài tương tự.

Đáp án và hướng dẫn giải:

a) x2 + 6xy + … = (… + 3y)2 nên x2 + 2x . 3y + … = (…+3y)2

= x2 + 2x . 3y + (3y)2 = (x + 3y)2

Vậy: x2 + 6xy +9y2 = (x + 3y)2

b) …-2x . 5y + (5y)2 = (… – …)2;

x2 – 2x . 5y + (5y)2 = (x – 5y)2

Vậy: x2 – 10xy + 25y2 = (x – 5y)2

Bài 7:

Tính diện tích phần hình còn lại mà không cần đo.

Từ một miếng tôn hình vuông có cạnh bằng a + b, bác thợ cắt đi một miếng cũng hình vuông có cạnh bằng a – b (cho a > b). Diện tích phần hình còn lại là bao nhiêu? Diện tích phần hình còn lại có phụ thuộc vào vị trí cắt không?

Đáp án và hướng dẫn giải bài:

Diện tích của miếng tôn là (a + b)2

Diện tích của miếng tôn phải cắt là (a – b)2.

Phần diện tích còn lại là (a + b)2 – (a – b)2.

Ta có: (a + b)2 – (a – b)2 = a2 + 2ab + b2 – (a2 – 2ab + b2)

= a2 + 2ab + b2 – a2 + 2ab – b2

= 4ab

Vậy phần diện tích hình còn lại là 4ab và không phụ thuộc vào vị trí cắt.

Bài 8: 

Nhận xét sự đúng, sai của kết quả sau:

x2 + 2xy + 4y2 = (x + 2y)2

Đáp án và hướng dẫn giải:

Nhận xét sự đúng, sai:

Ta có: (x + 2y)2 = x2 + 2 . x . 2y + 4y2

= x+ 4xy + 4y2

Nên kết quả x2 + 2xy + 4y2 = (x + 2y)2 sai.

Bài 9: 

Viết các đa thức sau dưới dạng bình phương của một tổng hoặc một hiệu:

a) 9x2 – 6x + 1;

b) (2x + 3y)2 + 2.(2x + 3y) + 1.

Hãy nêu một đề bài tương tự.

Đáp án và hướng dẫn giải:

a) 9x2 – 6x + 1 = (3x)2 – 2 . 3x . 1 + 12 = (3x – 1)2

Hoặc 9x2 – 6x + 1 = 1 – 6x + 9x2 = (1 – 3x)2

b) (2x + 3y) = (2x + 3y)2 + 2 . (2x + 3y) . 1 + 12

= [(2x + 3y) + 1]2

= (2x + 3y + 1)2

Đề bài tương tự. Chẳng hạn:

1 + 2(x + 2y) + (x + 2y)2

4x2 – 12x + 9…

16x2 y4 – 8xy2 +1

Bài 10

Tính nhanh:

a) 1012; b) 1992; c) 47.53.

Đáp án và hướng dẫn giải:

a) 1012 = (100 + 1)2 = 1002 + 2 . 100 + 1 = 10201

b) 1992= (200 – 1)2 = 2002 – 2 . 200 + 1 = 39601

c) 47.53 = (50 – 3)(50 + 3) = 502 – 3= 2500 – 9 = 2491.

III. Bài tập vận dụng

Bài 1:

Chứng minh rằng:

(a + b)2 = (a – b)2 + 4ab;

(a – b)2 = (a + b)2 – 4ab.

Áp dụng:

a) Tính (a – b)2, biết a + b = 7 và a . b = 12.

b) Tính (a + b)2, biết a – b = 20 và a . b = 3.

Bài 2:

Tính giá trị của biểu thức 49x2 – 70x + 25 trong mỗi trường hợp sau:

a) x = 5;

b) x = 1/7.

Bài 3:

Tính:

a) (a + b + c)2; b) (a + b – c)2;

c) (a – b – c)2

Bài 4. Áp dụng hằng đẳng thức để tính nhanh

a) 1001^{2}  =                     b) 29,9. 30,1 =

c) (31,8)^{2}  – 2.31,8.21,8 + (21,8)^{2}  =

Bài 5. Điền vào ô trống để trở thành hằng đẳng thức:

Ví  dụ : 36x^{2}  + 24x + ………..=

Phân tích : 36x^{2}  =(6x)^{2}  và 24x = 2. 6x. 2, từ đó phần còn thiếu là 2^{2}  = 4

Đáp án : 36x^{2}  + 24x + 4 = (6x + 2)^{2}

a) x^{2}  + 20x + ……..  =

b) 16x^{2}  + 24x + ……..= 

c) y^{2}  – ……….  + 49 =   

d) …………- 42xy +  49y^{2}  = 

e) x^{2}    + ………..+ 4y^{4}  = 

f) 4x^{2}  +…………..+ 1 =

g) (2a +3b)(            –                +               ) = 8a^{3}    + 27b^{3}

h) (5x –    )(        +          20xy +               ) = 125x^{3}  – 64y^{3}

Bài 6. Viết mỗi biểu thức sau dưới dạng tổng của hai bình phương

Ví dụ : x^{2}   – 2xy + 2y^{2}  +2y +1 = (x^{2}   – 2xy + y^{2} ) + (y^{2}  +2y +1) = (x - y)^{2}  + (y + 1)^{2}

a) x^{2}  + 10x + 26 + y^{2}  +2y =

b) z^{2}  – 6z + 13 + t^{2}  +4t =

c) 4x^{2}  – 4xz + 1 + 2z^{2}  -2z =

Bài 7. Tìm giá trị lớn nhất của biểu thức:

a) C = 4x – x^{2}  + 3

Tìm giá trị nhỏ nhất của biểu thức:

a) A = x^{2}  – 6x + 11

b) B = x^{2}  – 4x + y^{2}  – 8y + 6

Bài 8. Chứng minh các biểu thức sau luôn dương với mọi giá trị của biến

D = x^{2}  – 8x +19 

Chứng minh các biểu thức sau luôn âm với mọi giá trị của biến

 E = – x^{2} + 2x – 7 

Bài 9. Khai triển hằng đẳng thức dạng (A + B)^{2}  và (A - B)^{2}

(A + B)^{2}  = A^{2}  + 2.A.B + B^{2}               (A - B)^{2}  = A^{2}  – 2.A.B +  

B. Lý thuyết Những hằng đẳng thức đáng nhớ

I. Lý thuyết

1. Bình phương của một tổng:

(A+B)2=A2+2AB+B2

2. Bình phương của một hiệu:

(AB)2=A22AB+B2

3. Hiệu hai bình phương

A2B2 = (A – B)(A + B)

II. Các dạng bài

1. Dạng 1: Thực hiện phép tính

a. Phương pháp giải:

Sử dụng trực tiếp các hằng đẳng thức đã học để khai triển các biểu thức

b, Ví dụ minh họa:

VD1: Thực hiện phép tính:

Những hằng đẳng thức đáng nhớ lớp 8 và cách giải các dạng bài tập – Toán lớp 8 (ảnh 1)

VD2: Viết các biểu thức sau dưới dạng bình phương một tổng hoặc bình phương một hiệu:

a, 4x2+4x+1

b, x28x+16

Giải:

Những hằng đẳng thức đáng nhớ lớp 8 và cách giải các dạng bài tập – Toán lớp 8 (ảnh 1)

2. Dạng 2: Chứng minh các đẳng thức

a. Phương pháp giải:

Áp dụng linh hoạt các hằng đẳng thức, lựa chọn vế có thể dễ dàng áp dụng các hằng đẳng thức.

b. Ví dụ minh họa:

Chứng minh các đẳng thức sau:

Những hằng đẳng thức đáng nhớ lớp 8 và cách giải các dạng bài tập – Toán lớp 8 (ảnh 1)

Những hằng đẳng thức đáng nhớ lớp 8 và cách giải các dạng bài tập – Toán lớp 8 (ảnh 1)

3. Dạng 3: Tính nhanh

a. Phương pháp giải:

Áp dụng linh hoạt các hằng đẳng thức cho các số tự nhiên

b. Ví dụ minh họa:

Tính nhanh:

Những hằng đẳng thức đáng nhớ lớp 8 và cách giải các dạng bài tập – Toán lớp 8 (ảnh 1)

4. Dạng 4: Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức

a. Phương pháp giải:

Sử dụng các hằng đẳng thức và cần chú ý:

A20 và A20

b. Ví dụ minh họa:

a, Chứng minh 9x26x+3 luôn dương với mọi x

Giải:

Những hằng đẳng thức đáng nhớ lớp 8 và cách giải các dạng bài tập – Toán lớp 8 (ảnh 1)

Những hằng đẳng thức đáng nhớ lớp 8 và cách giải các dạng bài tập – Toán lớp 8 (ảnh 1)

Những hằng đẳng thức đáng nhớ lớp 8 và cách giải các dạng bài tập – Toán lớp 8 (ảnh 1)

Những hằng đẳng thức đáng nhớ lớp 8 và cách giải các dạng bài tập – Toán lớp 8 (ảnh 1)

Xem thêm
50 bài tập Những hằng đẳng thức đáng nhớ (có đáp án) - Toán 8 (trang 1)
Trang 1
50 bài tập Những hằng đẳng thức đáng nhớ (có đáp án) - Toán 8 (trang 2)
Trang 2
50 bài tập Những hằng đẳng thức đáng nhớ (có đáp án) - Toán 8 (trang 3)
Trang 3
50 bài tập Những hằng đẳng thức đáng nhớ (có đáp án) - Toán 8 (trang 4)
Trang 4
50 bài tập Những hằng đẳng thức đáng nhớ (có đáp án) - Toán 8 (trang 5)
Trang 5
50 bài tập Những hằng đẳng thức đáng nhớ (có đáp án) - Toán 8 (trang 6)
Trang 6
50 bài tập Những hằng đẳng thức đáng nhớ (có đáp án) - Toán 8 (trang 7)
Trang 7
50 bài tập Những hằng đẳng thức đáng nhớ (có đáp án) - Toán 8 (trang 8)
Trang 8
50 bài tập Những hằng đẳng thức đáng nhớ (có đáp án) - Toán 8 (trang 9)
Trang 9
50 bài tập Những hằng đẳng thức đáng nhớ (có đáp án) - Toán 8 (trang 10)
Trang 10
Tài liệu có 59 trang. Để xem toàn bộ tài liệu, vui lòng tải xuống
Đánh giá

0

0 đánh giá

Tải xuống