Tailieumoi.vn xin giới thiệu Bài tập Toán 8 Chương 1 Bài 3: Những hằng đẳng thức đáng nhớ. Bài viết gồm 50 bài tập với đầy đủ các mức độ và có hướng dẫn giải chi tiết sẽ giúp học sinh ôn luyện kiến thức và rèn luyện kĩ năng làm bài tập Toán 8. Ngoài ra, bài viết còn có phần tóm tắt nội dung chính lý thuyết Chương 1 Bài 3: Những hằng đẳng thức đáng nhớ. Mời các bạn đón xem:
Bài tập Toán 8 Chương 1 Bài 3: Những hằng đẳng thức đáng nhớ
A. Bài tập Những hằng đẳng thức đáng nhớ
I. Bài tập trắc nghiệm
Bài 1: Điền vào chỗ trống: A = (x - y )2 = x2 - ... + y2
A. 2xy
B. xy
C. - 2xy
D. xy
Lời giải:
Áp dụng hằng đẳng thức (a - b)2 = a2 - 2ab + b2.
Khi đó ta có A = ( x - y )2 = x2 - 2.x.y + y2 = x2 - xy + y2.
Suy ra chỗ trống cần điền là xy.
Chọn đáp án B.
Bài 2: Giá trị của x thỏa mãn 2x2 - 4x + 2 = 0 là ?
A. x = 1.
B. x = - 1.
C. x = 2.
D. x = - 2.
Lời giải:
Ta có 2x2 - 4x + 2 = 0
⇔ 2( x2 - 2x + 1 ) = 0 ( 1 )
Áp dụng hằng đẳng thức ( a - b )2 = a2 - 2ab + b2
Khi đó ta có ( 1 ) ⇔ 2( x - 1 )2 = 0
⇔ x - 1 = 0
⇔ x = 1.
Chọn đáp án A.
Bài 3:
Lời giải:
Áp dụng hằng đẳng thức đáng nhớ:
Ta được:
Chọn đáp án A
Bài 4: Rút gọn biểu thức: A = (x – 2y).(x2 + 2xy + y2) - (x + 2y). (x2 – 2xy + y2)
A. 2x3
B. -16y3
C. 16y3
D. –2x3
Lời giải:
Áp dụng hằng đẳng thức:
a3 – b3 = (a – b).(a2 + ab + b2) và a3 + b3 = (a + b).(a2 – ab + b2) ta được:
A = (x – 2y). (x2 + 2xy + y2) - (x + 2y). (x2 – 2xy + y2)
A = x3 – (2y)3 - [x3 + (2y)3]
A = x3 – 8y3 – x3 – 8y3 = -16y3
Chọn đáp án B
Bài 5: Rút gọn biểu thức A = (x + 2y ).(x - 2y) - (x – 2y)2
A. 2x2 + 4xy
B. – 8y2 + 4xy
C. - 8y2
D. – 6y2 + 2xy
Lời giải:
Ta có: A = (x + 2y ). (x - 2y) - (x – 2y)2
A = x2 – (2y)2 – [x2 – 2.x.2y +(2y)2 ]
A = x2 – 4y2 – x2 + 4xy - 4y22
A = -8y2 + 4xy
Chọn đáp án B
Bài 6: Chọn câu đúng
A. (c + d)2 – (a + b)2 = (c + d + a + b)(c + d – a + b)
B. (c – d)2 – (a + b)2 = (c – d + a + b)(c – d – a + b)
C. (a + b + c – d)(a + b – c + d) = (a + b)2 – (c – d)2
D. (c – d)2 – (a – b)2 = (c – d + a – b)(c – d – a – b)
Lời giải:
Ta có:
(c + d)2 – (a + b)2 = (c + d + a + b)(c + d – (a + b)) = (c + d + a + b)(c + d – a – b) nên A sai
(c – d)2 – (a + b)2 = (c – d + a + b)[c – d – (a + b)] = (c – d + a + b)(c – d – a – b) nên B sai
(c – d)2 – (a – b)2 = (c – d + a – b)(c – d – (a – b)) = (c – d + a – b)(c – d – a + b) nên D sai
(a + b + c – d)(a + b – c + d) = [(a + b) + (c – d)][(a + b) – (c – d)] = (a + b)2 – (c – d)2 nên C đúng
Đáp án cần chọn là: C
Bài 7: Chọn câu đúng
A. 4 – (a + b)2 = (2 + a + b)(2 – a + b)
B. 4 – (a + b)2 = (4 + a + b)(4 – a – b)
C. 4 – (a + b)2 = (2 + a – b)(2 – a + b)
D. 4 – (a + b)2 = (2 + a + b)(2 – a – b)
Lời giải
Ta có 4 – (a + b)2 = 22 – (a + b)2
= (2 + a + b)[2 – (a + b)]
= (2 + a + b)(2 – a – b)
Đáp án cần chọn là: D
Bài 8: Rút gọn biểu thức A = (3x – 1)2 – 9x(x + 1) ta được
A. -15x + 1
B. 1
C. 15x + 1
D. – 1
Lời giải: Ta có
A = (3x – 1)2 – 9x(x + 1)
= (3x)2 – 2.3x.1 + 1 – (9x.x + 9x)
= 9x2 – 6x + 1 – 9x2 – 9x
= -15x + 1
Đáp án cần chọn là: A
Bài 9: Rút gọn biểu thức A = 5(x + 4)2 + 4(x – 5)2 – 9(4 + x)(x – 4), ta được:
A. 342
B. 243
C. 324
D. -324
Lời giải
Ta có
A = 5(x + 4)2 + 4(x – 5)2 – 9(4 + x)(x – 4)
= 5(x2 + 2.x.4 + 16) + 4(x2 – 2.x.5 + 52) – 9(x2 – 42)
= 5(x2 + 8x + 16) + 4(x2 – 10x + 25) – 9(x2 – 42)
= 5x2 + 40x + 80 + 4x2 – 40x + 100 – 9x2 + 144
= (5x2 + 4x2 – 9x2) + (40x – 40x) + (80 +100 + 144)
= 324
Đáp án cần chọn là: C
Bài 10: Rút gọn biểu thức B = (2a – 3)(a + 1) – (a – 4)2 – a(a + 7) ta được
A. 0
B. 1
C. 19
D. – 19
Lời giải
B = (2a – 3)(a + 1) – (a – 4)2 – a(a + 7)
= 2a2 + 2a – 3a – 3 – (a2 – 8a + 16) – (a2 + 7a)
= 2a2 + 2a – 3a – 3 – a2 + 8a – 16 – a2 – 7a
= - 19
Đáp án cần chọn là: D
Bài 11: Cho B = (x2 + 3)2 – x2(x2 + 3) – 3(x + 1)(x – 1). Chọn câu đúng.
A. B < 12
B. B > 13
C. 12 < B< 14
D. 11 < B < 13
Lời giải
B = (x2 + 3)2 – x2(x2 + 3) – 3(x + 1)(x – 1).
= (x2)2 +2.x2.4 + 32 – (x2.x2 + x2.3) – 3(x2 – 1)
= x4 + 6x2 + 9 – x4 – 3x2 – 3x2 + 3 = 12
Đáp án cần chọn là: D
Bài 12: Cho . Tìm mối quan hệ giữa C và D.
A. D = 14C + 1
B. D = 14C
C. D = 14C – 1
D. D = 14C – 2
Lời giải
Ta có:
Vậy D = 29; C = 2 suy ra D = 14C + 1 (do 29 = 14.2 + 1)
Đáp án cần chọn là: A
Bài 13: Cho M = 4(x + 1)2 + (2x + 1)2 – 8(x – 1)(x + 1) – 12x và N = 2(x – 1)2 – 4(3 + x)2 + 2x(x + 14).
Tìm mối quan hệ giữa M và N
A. 2N – M = 60
B. 2M – N = 60
C. M> 0, N < 0
D. M > 0, N > 0
Lời giải
Ta có
M = 4(x + 1)2 + (2x + 1)2 – 8(x – 1)(x + 1) – 12
= 4(x2 + 2x + 1) + (4x2 + 4x + 1) – 8(x2 – 1) – 12x
= 4x2 + 8x + 4 + 4x2 + 4x + 1 – 8x2 +8 – 12x
= (4x2 + 4x2 – 8x2) + (8x + 4x – 12x) + 4 + 1 +8
= 13
N = 2(x – 1)2 – 4(3 + x)2 + 2x(x + 14)
= 2(x2 – 2x + 1) – 4(9 + 6x + x2) + 2x2 + 28x
= 2x2 – 4x + 2 – 36 – 24x – 4x2 + 2x2 + 28x
= (2x2 +2x2 – 4x2) + (-4x – 24x + 28x) + 2 – 36
= -34
Suy ra M = 13, N = -34 ⇔ 2M – N = 60
Đáp án cần chọn là: B
Bài 14: Có bao nhiêu giá trị x thỏa mãn (2x – 1)2 – (5x – 5)2 = 0
A. 0
B. 1
C. 2
D. 3
Lời giải
Vậy có hai giá trị của x thỏa mãn yêu cầu
Đáp án cần chọn là: C
Bài 15: Có bao nhiêu giá trị x thỏa mãn (2x + 1)2 – 4(x + 3)2 = 0
A. 0
B. 1
C. 2
D. 3
Lời giải
Ta có:
Vậy có một giá trị của x thỏa mãn yêu cầu.
Đáp án cần chọn là: B
II. Bài tập tự luận
Bài 1: Viết các biểu thức sau dưới dạng bình phương của một tổng hoặc một hiệu:
a, | b, |
c, | d, |
e, | f, |
Lời giải:
a,
b,
c,
d,
e,
f,
Bài 2: Tính giá trị của biểu thức:
a, tại a = 2, b = 3
b, tại
c, tại x= 5
Lời giải:
a, Thay a = 2, b = 3 vào có:
b, Có
Thay có:
c, Có
Thay x = 5 có:
Bài 3: Tính:
a,
b,
Lời giải:
a,
b,
Bài 4
Viết các biểu thức sau dưới dạng bình phương của một tổng hoặc một hiệu:
a) x2 + 2x + 1
b) 9x2 + y2 + 6xy;
c) 25a2 + 4b2 – 20ab;
d) x2 – x +
Đáp án và hướng dẫn giải:
a) x2 + 2x + 1 = x2+ 2.x.1 + 12
= (x + 1)2
b) 9x2 + y2+ 6xy = (3x)2 + 2.3. x.y + y.2 = (3x + y)2
c) 25a2 + 4b2– 20ab = (5a)2 – 2.5a.2b + (2b)2 = (5a – 2b)2
Hoặc 25a2 + 4b2 – 20ab = (2b)2 – 2.2b.5a + (5a)2 = (2b – 5a)2
d) x2 – x +
= x2 – 2.x.+ ()2
=(x - )2
Hoặc x2 – x +
= - x + x2 =()2 – 2. x + x2 = ( - x)2
Chứng minh rằng:
(10a + 5)2 = 100a . (a + 1) + 25.
Từ đó em hãy nêu cách tính nhẩm bình phương của một số tự nhiên có tận cùng bằng chữ số 5.
Áp dụng để tính: 252, 352, 652, 752.
Đáp án và hướng dẫn giải:
Ta có: (10a + 5)2 = (10a)2 + 2.10a.5 + 52
= 100a2 + 100a + 25
= 100a(a + 1) + 25.
Cách tính nhẩm bình thường của một số tận cùng bằng chữ số 5;
Ta gọi a là số chục của số tự nhiên có tận cùng bằng 5 => số đã cho có dạng 10a + 5 và ta được
(10a + 5)2 = 100a(a + 1) + 25
Vậy để tính bình phương của một số tự nhiên có tận cùng bởi chữ số 5 ta tính tích a(a + 1) rồi viết 25 vào bên phải.
Áp dụng;
Để tính 252 ta tính 2(2 + 1) = 6 rồi viết tiếp 25 vào bên phải ta được 625.
Để tính 352 ta tính 3(3 + 1) = 12 rồi viết tiếp 25 vào bên phải ta được 1225.
652 = (10.6 + 5)2= 100.6(6+1) +25= 600.7 +25 =4200 +25= 4225
752 =(10.7+5)2 = 100.7(7+1) +25 = 700.8 +25=5600 +25 = 5625
Hãy tìm cách giúp bạn An khôi phục lại những hằng đẳng thức bị mực làm nhòe đi một số chỗ:
a) x2 + 6xy + … = (… + 3y)2;
b) … – 10xy + 25y2 = (… – …)2;
Hãy nêu một số đề bài tương tự.
Đáp án và hướng dẫn giải:
a) x2 + 6xy + … = (… + 3y)2 nên x2 + 2x . 3y + … = (…+3y)2
= x2 + 2x . 3y + (3y)2 = (x + 3y)2
Vậy: x2 + 6xy +9y2 = (x + 3y)2
b) …-2x . 5y + (5y)2 = (… – …)2;
x2 – 2x . 5y + (5y)2 = (x – 5y)2
Vậy: x2 – 10xy + 25y2 = (x – 5y)2
Bài 7:
Tính diện tích phần hình còn lại mà không cần đo.
Từ một miếng tôn hình vuông có cạnh bằng a + b, bác thợ cắt đi một miếng cũng hình vuông có cạnh bằng a – b (cho a > b). Diện tích phần hình còn lại là bao nhiêu? Diện tích phần hình còn lại có phụ thuộc vào vị trí cắt không?
Đáp án và hướng dẫn giải bài:
Diện tích của miếng tôn là (a + b)2
Diện tích của miếng tôn phải cắt là (a – b)2.
Phần diện tích còn lại là (a + b)2 – (a – b)2.
Ta có: (a + b)2 – (a – b)2 = a2 + 2ab + b2 – (a2 – 2ab + b2)
= a2 + 2ab + b2 – a2 + 2ab – b2
= 4ab
Vậy phần diện tích hình còn lại là 4ab và không phụ thuộc vào vị trí cắt.
Bài 8:
Nhận xét sự đúng, sai của kết quả sau:
x2 + 2xy + 4y2 = (x + 2y)2
Đáp án và hướng dẫn giải:
Nhận xét sự đúng, sai:
Ta có: (x + 2y)2 = x2 + 2 . x . 2y + 4y2
= x2 + 4xy + 4y2
Nên kết quả x2 + 2xy + 4y2 = (x + 2y)2 sai.
Bài 9:
Viết các đa thức sau dưới dạng bình phương của một tổng hoặc một hiệu:
a) 9x2 – 6x + 1;
b) (2x + 3y)2 + 2.(2x + 3y) + 1.
Hãy nêu một đề bài tương tự.
Đáp án và hướng dẫn giải:
a) 9x2 – 6x + 1 = (3x)2 – 2 . 3x . 1 + 12 = (3x – 1)2
Hoặc 9x2 – 6x + 1 = 1 – 6x + 9x2 = (1 – 3x)2
b) (2x + 3y) = (2x + 3y)2 + 2 . (2x + 3y) . 1 + 12
= [(2x + 3y) + 1]2
= (2x + 3y + 1)2
Đề bài tương tự. Chẳng hạn:
1 + 2(x + 2y) + (x + 2y)2
4x2 – 12x + 9…
16x2 y4 – 8xy2 +1
Bài 10
Tính nhanh:
a) 1012; b) 1992; c) 47.53.
Đáp án và hướng dẫn giải:
a) 1012 = (100 + 1)2 = 1002 + 2 . 100 + 1 = 10201
b) 1992= (200 – 1)2 = 2002 – 2 . 200 + 1 = 39601
c) 47.53 = (50 – 3)(50 + 3) = 502 – 32 = 2500 – 9 = 2491.
III. Bài tập vận dụng
Bài 1:
Chứng minh rằng:
(a + b)2 = (a – b)2 + 4ab;
(a – b)2 = (a + b)2 – 4ab.
Áp dụng:
a) Tính (a – b)2, biết a + b = 7 và a . b = 12.
b) Tính (a + b)2, biết a – b = 20 và a . b = 3.
Bài 2:
Tính giá trị của biểu thức 49x2 – 70x + 25 trong mỗi trường hợp sau:
a) x = 5;
b) x = 1/7.
Bài 3:
Tính:
a) (a + b + c)2; b) (a + b – c)2;
c) (a – b – c)2
Bài 4. Áp dụng hằng đẳng thức để tính nhanh
a) = b) 29,9. 30,1 =
c) – 2.31,8.21,8 + =
Bài 5. Điền vào ô trống để trở thành hằng đẳng thức:
Ví dụ : 36 + 24x + ………..=
Phân tích : 36 = và 24x = 2. 6x. 2, từ đó phần còn thiếu là = 4
Đáp án : 36 + 24x + 4 =
a) + 20x + …….. =
b) 16 + 24x + ……..=
c) – ………. + 49 =
d) …………- 42xy + 49 =
e) + ………..+ 4 =
f) 4 +…………..+ 1 =
g) (2a +3b)( – + ) = 8 + 27
h) (5x – )( + 20xy + ) = 125 – 64
Bài 6. Viết mỗi biểu thức sau dưới dạng tổng của hai bình phương
Ví dụ : – 2xy + 2 +2y +1 = ( – 2xy + ) + ( +2y +1) = +
a) + 10x + 26 + +2y =
b) – 6z + 13 + +4t =
c) 4 – 4xz + 1 + 2 -2z =
Bài 7. Tìm giá trị lớn nhất của biểu thức:
a) C = 4x – + 3
Tìm giá trị nhỏ nhất của biểu thức:
a) A = – 6x + 11
b) B = – 4x + – 8y + 6
Bài 8. Chứng minh các biểu thức sau luôn dương với mọi giá trị của biến
D = – 8x +19
Chứng minh các biểu thức sau luôn âm với mọi giá trị của biến
E = – + 2x – 7
Bài 9. Khai triển hằng đẳng thức dạng và
= + 2.A.B + = – 2.A.B +
B. Lý thuyết Những hằng đẳng thức đáng nhớ
I. Lý thuyết
1. Bình phương của một tổng:
2. Bình phương của một hiệu:
3. Hiệu hai bình phương
= (A – B)(A + B)
II. Các dạng bài
1. Dạng 1: Thực hiện phép tính
a. Phương pháp giải:
Sử dụng trực tiếp các hằng đẳng thức đã học để khai triển các biểu thức
b, Ví dụ minh họa:
VD1: Thực hiện phép tính:
VD2: Viết các biểu thức sau dưới dạng bình phương một tổng hoặc bình phương một hiệu:
a,
b,
Giải:
2. Dạng 2: Chứng minh các đẳng thức
a. Phương pháp giải:
Áp dụng linh hoạt các hằng đẳng thức, lựa chọn vế có thể dễ dàng áp dụng các hằng đẳng thức.
b. Ví dụ minh họa:
Chứng minh các đẳng thức sau:
3. Dạng 3: Tính nhanh
a. Phương pháp giải:
Áp dụng linh hoạt các hằng đẳng thức cho các số tự nhiên
b. Ví dụ minh họa:
Tính nhanh:
4. Dạng 4: Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức
a. Phương pháp giải:
Sử dụng các hằng đẳng thức và cần chú ý:
và
b. Ví dụ minh họa:
a, Chứng minh luôn dương với mọi x
Giải: