HĐ 3 trang 114 Toán 11 Tập 1 Kết nối tri thức | Giải bài tập Toán lớp 11

452

Với giải HĐ 3 trang 114 Toán 11 Tập 1 Kết nối tri thức chi tiết trong Bài 16: Giới hạn của hàm số giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 11. Mời các bạn đón xem:

Giải bài tập Toán lớp 11 Bài 16: Giới hạn của hàm số

HĐ3 trang 114 Toán 11 Tập 1: Nhận biết khái niệm giới hạn tại vô cực

Cho hàm số fx=1+2x1 có đồ thị như Hình 5.4.

HĐ3 trang 114 Toán 11 Tập 1 | Kết nối tri thức Giải Toán 11

Giả sử (xn) là dãy số sao cho xn > 1, xn ⟶ +∞. Tính f(xn) và tìm .

Lời giải:

Với (xn) là dãy số sao cho xn > 1, xn ⟶ +∞.

Ta có: fxn=1+2xn1.

Khi xn ⟶ +∞ thì limn+2xn1=0.

Do đó limn+fxn=limn+1+2xn1=1.

 Lý thuyết Giới hạn hữu hạn của hàm số tại vô cực

Cho hàm số y=f(x)xác định trên khoảng (a;+). Ta nói hàm số f(x)có giới hạn là số L khi x+ nếu với dãy số (xn)bất kì xn>a và xn+ta có f(xn)L, kí hiệu limx+f(x)=L hay f(x)L khi x+.

Cho hàm số y=f(x)xác định trên khoảng (;b). Ta nói hàm số f(x)có giới hạn là số L khi x nếu với dãy số (xn)bất kì xn<b và xnta có f(xn)L, kí hiệu limxf(x)=L hay f(x)L khi x.

* Nhận xét:

Các quy tắc tính giới hạn hữu hạn tại một điểm cũng đúng cho giới hạn hữu hạn tại vô cực.

Với c là hằng số, limx+c=climxc=c.

Với k là một số nguyên dương, ta có: limx+(1xk)=0,limx(1xk)=0.

 

Từ khóa :
Toán 11
Đánh giá

0

0 đánh giá