Bài 4 trang 15 Toán 11 Tập 1 Cánh diều | Giải bài tập Toán lớp 11

1.2 K

Với giải Bài 4 trang 15 Toán 11 Tập 1 Cánh diều chi tiết trong Bài 1: Góc lượng giác. Giá trị lượng giác của góc lượng giác giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 11. Mời các bạn đón xem:

Giải bài tập Toán lớp 11 Bài 1: Góc lượng giác. Giá trị lượng giác của góc lượng giác

Bài 4 trang 15 Toán 11 Tập 1: Tính các giá trị lượng giác của góc α trong mỗi trường hợp sau:

a) sinα=154với π2<α<π;

b) cosα=23 với π<α<0 ;

c) tanα = 3 với ‒π < α < 0;

d) cotα = ‒2 với 0 < α < π.

Lời giải:

a) Do π2<α<π nên cosα < 0.

Áp dụng công thức sin2α + cos2α = 1, ta có:

1542+cos2α=1

cos2α=11542=11516=116

cosα=14 (do cosα < 0).

Ta có: tanα=sinαcosα=15414=15 ;

cotα=1tanα=115=1515 .

Vậy cosα=14 ; tanα=15  cotα=1515.

b) Do ‒π < α < 0 nên sinα < 0.

Áp dụng công thức sin2α + cos2α = 1, ta có:

sin2α+232=1

sin2α=1232=149=59.

sinα=53 (do sinα < 0).

Ta có: tanα=sinαcosα=5323=152;

cotα=1tanα=1152=215=21515.

Vậy sinα=53 ; tanα=152  cotα=21515.

c) Do ‒π < α < 0 nên sinα < 0 và cosα > 0.

Áp dụng công thức tanα.cotα = 1, ta có cotα=1tanα=13.

Áp dụng công thức 1+tan2α=1cos2α, ta có

1+32=1cos2α hay1cos2α=10

cos2α=110cosα=1010 (do cosα > 0).

Áp dụng công thức 1+cot2α=1sin2α , ta có:

1+132=1sin2αhay 1sin2α=109

sin2α=910sinα=310=31010 (do sinα < 0).

Vậy sinα31010 ; cosα=1010; cotα=13.

Sơ đồ tư duy Gía trị lượng giác của góc lượng giác

Đánh giá

0

0 đánh giá