Hoạt động 4 trang 8 Toán 11 Tập 1 Cánh diều | Giải bài tập Toán lớp 11

465

Với giải Hoạt động 4 trang 8 Toán 11 Tập 1 Cánh diều chi tiết trong Bài 1: Góc lượng giác. Giá trị lượng giác của góc lượng giác giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 11. Mời các bạn đón xem:

Giải bài tập Toán lớp 11 Bài 1: Góc lượng giác. Giá trị lượng giác của góc lượng giác

Hoạt động 4 trang 8 Toán 11 Tập 1: Trong Hình 7, hai góc lượng giác (Ou, Ov), (O’u’, O’v’) có tia đầu trùng nhau Ou  O’u’, tia cuối trùng nhau Ov  O’v’. Nêu dự đoán về mối liên hệ giữa số đo của hai góc lượng giác trên.

Lời giải:

Quan sát Hình 7 ta thấy:

• Tia Om quay (chẳng hạn theo chiều dương) xuất phát từ tia Ou đến trùng với tia Ov rồi quay tiếp một số vòng đến trùng với tia cuối Ov;

• Tia Om quay (chẳng hạn theo chiều dương) xuất phát từ tia O’u’ ≡ Ou đến trùng với tia O’v’ ≡ Ov rồi quay tiếp một số vòng đến trùng với tia cuối O’v’ ≡ Ov.

Như vậy, sự khác biệt giữa hai góc lượng giác (Ou, Ov), (O’u’, O’v’) chính là số vòng quay quanh điểm O.

Vì vậy, sự khác biệt giữa số đo của hai góc lượng giác đó chính là bội nguyên của 360° khi hai góc đó tính theo đơn vị độ (hay bội nguyên của 2π rad khi hai góc đó tính theo đơn vị radian).

 Lý thuyết Góc lượng giác

1. Góc hình học và số đo của chúng

Lý thuyết Góc lượng giác. Giá trị lượng giác của góc lượng giác (Chân trời sáng tạo 2023) hay, chi tiết | Toán lớp 11 (ảnh 1) 

*Nhận xét:

- Đơn vị đo góc: độ hoặc radian (rad).

- Ta có: 180o=πrad, do đó 1 rad =(180π)o1o=(π180)rad.

- Người ta thường không viết chữ radian hay rad sau số đo góc.

VD: π2rad cũng được viết là π2.

2. Góc lượng giác và số đo của chúng

a, Khái niệm

- Cho 2 tia Ou, Ov. Nếu tia Om quay chỉ theo chiều dương (hay chỉ theo chiều âm) xuất phát từ Ou đến trùng với tia Ov thì ta nói: Tia Om quét một góc lượng giác với tia đầu Ou và tia cuối Ov.

Kí hiệu: (Ou, Ov).

- Mỗi góc lượng giác được xác định bởi tia đầu Ou, tia cuối Ov và số đo của góc đó.

b, Tính chất

- Cho hai góc lượng giác = và (O’u’,O’v’) có tia đầu trùng nhau (OuOu), tia cuối trùng nhau (OvOv).

Khi đó, nếu sử dụng đợn vị đo là độ thì ta có:

(Ou,Ov)=(Ou,Ov)+k360o,kZ.

Nếu sử dụng đơn vị đo là radian thì:

(Ou,Ov)=(Ou,Ov)+k2π,kZ.

* Hệ thức Chasles

Với 3 tia Ou, Ov, Ow bất kì ta có:

 (Ou,Ov) + (Ov, Ow) = (Ou,Ow) +k2π,kZ.

Đánh giá

0

0 đánh giá