Cho tam giác ABC có góc A tù. Trên cạnh AC lấy điểm D và E (D nằm giữa A và E)

1 K

Với giải Bài 13 trang 70 SBT Toán lớp 7 Cánh diều chi tiết trong Bài 2: Quan hệ giữa góc và cạnh đối diện. Bất đẳng thức tam giác giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 7. Mời các bạn đón xem:

Giải SBT Toán lớp 7 Bài 2: Quan hệ giữa góc và cạnh đối diện. Bất đẳng thức tam giác

Bài 13 trang 70 sách bài tập Toán lớp 7 Tập 2: Cho tam giác ABC có góc A tù. Trên cạnh AC lấy điểm D và E (D nằm giữa A và E). Chứng minh BA < BD < BE < BC.

Lời giải:

Cho tam giác ABC có góc A tù. Trên cạnh AC lấy điểm D và E (D nằm giữa A và E). Chứng minh BA < BD < BE < BC

• Xét tam giác ABD có A^ là góc tù.

Nên BA < BD (trong tam giác tù, cạnh đối diện với góc tù là cạnh lớn nhất) (1)

•Vì BDE^là góc ngoài của tam giác ADB tại đỉnh D nên BDE^=A^+ABD^ .

 A^ là góc tù.

Do đó BDE^ là góc tù.

Xét tam giác EBD có BDE^ là góc tù .

Nên BD < BE (trong tam giác tù, cạnh đối diện với góc tù là cạnh lớn nhất) (2)

•Vì BEC^là góc ngoài của tam giác AEB tại đỉnh E nên BEC^=A^+ABE^

 A^ là góc tù.

Do đó BEC^ là góc tù.

Xét tam giác EBC có BEC^ là góc tù.

Nên BE < BC (trong tam giác tù, cạnh đối diện với góc tù là cạnh lớn nhất) (3)

Từ (1), (2) và (3) suy ra BA < BD < BE < BC.

Vậy BA < BD < BE < BC.

Đánh giá

0

0 đánh giá