Bài 5 trang 86 Toán 10 Tập 2 | Chân trời sáng tạo Giải Toán lớp 10

2.5 K

Với giải Bài 5 trang 86 Toán lớp 10 Chân trời sáng tạo chi tiết trong Bài tập cuối chương 10 trang 86 giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 10. Mời các bạn đón xem:

Giải bài tập Toán lớp 10 Bài tập cuối chương 10 trang 86

Bài 5 trang 86 Toán lớp 10 Tập 2Một nhóm học sinh được chia vào 4 tổ, mỗi tổ có 3 học sinh. Chọn ra ngẫu nhiên từ nhóm đó 4 học sinh. Tính xác suất của mỗi biến cố sau:

a) “Bốn bạn thuộc 4 tổ khác nhau”;

b) “Bốn bạn thuộc 2 tổ khác nhau”.

Lời giải:

Vì một nhóm học sinh được chia vào 4 tổ, mỗi tổ có 3 học sinh nên số học sinh của nhóm là: 4.3 = 12 (học sinh).

Chọn ngẫu nhiên từ nhóm đó 4 học sinh nên ta có: C124=495 (cách)

Do đó số kết quả của không gian mẫu là: n(Ω) = 495.

a) Gọi A là biến cố: “Bốn bạn thuộc 4 tổ khác nhau”

Nghĩa là mỗi bạn chọn từ mỗi nhóm, mỗi nhóm có 3 học sinh nên số kết quả thuận lợi cho biến cố A là: n(A) = C31.C31.C31.C31=81.

⇒ P(A) = n(A)nΩ=81495=955.

b) Gọi B là biến cố: “Bốn bạn thuộc 2 tổ khác nhau”.

Công việc chọn bốn bạn thuộc 2 tổ khác nhau được chia làm hai giai đoạn như sau:

Giai đoạn 1: Chọn 2 tổ từ 4 tổ để chọn học sinh, ta có: C42=6 (cách).

Giai đoạn 2: Ứng với 2 tổ được chọn, số cách chọn 4 học sinh từ 2 tổ này là: C64=15 (cách).

Số kết quả chọn bốn bạn thuộc 2 tổ khác nhau là: 6.15 = 90 (cách) hay n(B) = 90.

⇒ P(B) = n(B)nΩ=90495=211.

Đánh giá

0

0 đánh giá