Cho đa thức P(x) = 3x^3 – 2x^2 + 5. Chia đa thức P(x) cho đa thức Q(x) (Q(x) ≠ 0)

1.8 K

Với giải Bài 45 trang 54 SBT Toán lớp 7 Cánh diều chi tiết trong Bài 5: Phép chia đa thức một biến giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 7. Mời các bạn đón xem:

Giải SBT Toán lớp 7 Bài 5: Phép chia đa thức một biến

Bài 45 trang 54 sách bài tập Toán lớp 7 Tập 2: Cho đa thức P(x) = 3x3 – 2x2 + 5. Chia đa thức P(x) cho đa thức Q(x) (Q(x) ≠ 0) được thương là đa thức S(x) = 3x – 2 và dư là đa thức R(x) = 3x + 3. Tìm đa thức Q(x).

Lời giải:

Dựa vào quy tắc phép chia ta có:

P(x) = Q(x) . S(x) + R(x)

Hay P(x) – R(x) = Q(x) . S(x)

Suy ra Q(x) = [P(x) – R(x)] : S(x)

Do đó Q(x) = [(3x3 – 2x2 + 5) – (3x + 3)] : (3x – 2)

= (3x3 – 2x2 + 5 – 3x – 3) : (3x – 2)

= (3x3 – 2x2 – 3x + 2) : (3x – 2)

Ta thực hiện đặt tính chia đa thức như sau:

Cho đa thức P(x) = 3x^3 – 2x^2 + 5

Khi đó Q(x) = (3x3 – 2x2 – 3x + 2) : (3x – 2) = x2 – 1.

Vậy Q(x) = x2 – 1.

Đánh giá

0

0 đánh giá