Tailieumoi.vn giới thiệu Giải bài tập Toán lớp 7 Bài 7: Tam giác cân chi tiết sách Toán 7 Tập 2 Cánh diều giúp học sinh xem và so sánh lời giải từ đó biết cách làm bài tập môn Toán 7. Mời các bạn đón xem:
Giải bài tập Toán lớp 7 Bài 7: Tam giác cân
A. Câu hỏi trong bài
Tam giác ABC như vậy gọi là tam giác gì?
Lời giải:
Sau bài học này chúng ta sẽ giải quyết được câu hỏi trên như sau:
Tam giác ABC mô tả cầu Long Biên ở hình vẽ trên là tam giác cân.
Lời giải:
Ta coi độ dài cạnh ô vuông nhỏ là 1 đơn vị.
Khi đó cạnh AB là đường chéo của hình chữ nhật có chiều dài bằng 4 đơn vị và chiều rộng bằng 2 đơn vị.
Ta cũng có cạnh AC là đường chéo của hình chữ nhật có chiều dài bằng 4 đơn vị và chiều rộng bằng 2 đơn vị.
Do đó AB = AC.
Vậy hai cạnh AB và AC của tam giác ABC có bằng nhau.
a) Hai tam giác ABD và ACD có bằng nhau hay không? Vì sao?
b) Hai góc B và C có bằng nhau hay không? Vì sao?
Lời giải:
Tam giác ABC cân tại A nên AB = AC.
Vì AD là tia phân giác của góc A nên
a) Xét tam giác ABD và tam giác ACD có:
AB = AC (chứng minh trên)
(chưng minh trên)
Cạnh AD là cạnh chung
Do đó ABD = ACD (c.g.c)
Vậy ABD = ACD.
b) Vì ABD = ACD (chứng minh câu a)
Suy ra (hai góc tương ứng)
Vậy
a) Hai tam giác BAH và CAH có bằng nhau hay không? Vì sao?
b) Hai cạnh AB và AC có bằng nhau hay không? Vì sao?
Lời giải:
a) Vì AH ⊥ BC (H ∈ BC) nên
Do đó tam giác ABH vuông tại H, tam giác ACH vuông tại H
Xét tam giác ABH vuông tại H có: (trong tam giác vuông, hai góc nhọn phụ nhau)
Tam giác ACH vuông tại H có: (trong tam giác vuông, hai góc nhọn phụ nhau)
Mà (giả thiết)
Do đó
Xét tam giác ABH (vuông tại H) và tam giác ACH (vuông tại H) có:
AH là cạnh chung
Do đó ABH = ACH (cạnh góc vuông – góc nhọn kề)
Vậy ABH = DACH.
b) Vì ABH = ACH (chứng minh câu a)
Suy ra AB = AC (hai cạnh tương ứng)
Vậy AB = AC.
Lời giải:
Tam giác ABC cân tại A (giả thiết) nên
Vì MN // BC nên và (các cặp góc đồng vị)
Mà tam giác ABC cân tại A (giả thiết) nên
Suy ra
Do đó tam giác AMN cân tại A.
Vậy tam giác AMN cân tại A.
Để vẽ tam giác ABC, ta làm như sau:
Bước 1. Vẽ đoạn thẳng BC = 4 cm
Bước 2. Vẽ một phần đường tròn tâm B bán kính 3 cm và một phần đường tròn tâm C bán kính 3 cm, chúng cắt nhau tại điểm A.
Bước 3. Vẽ các đoạn thẳng AB, AC. Ta nhận được tam giác ABC.
B. Bài tập
Lời giải:
GT |
ABC cân tại A M, N lần lượt là trung điểm cạnh AC, AB |
KL |
BM = CN. |
Chứng minh (Hình vẽ dưới đây)
Tam giác ABC cân tại A (giả thiết) nên và AB = AC (1)
Mà M là trung điểm cạnh AC (giả thiết) nên AM = MC (2)
N là trung điểm cạnh AB (giả thiết) nên AN = NB (3)
Từ (1), (2) và (3) suy ra AM = MC = AN = NB
Xét tam giác BNC và tam giác CMB có:
BN = CM (chứng minh trên)
(chứng minh trên)
BC là cạnh chung
Do đó BNC = CMB (c.g.c)
Suy ra CN = BM (hai cạnh tương ứng)
Vậy BM = CN.
Lời giải:
GT |
ABC, AD là tia phân giác góc A DE // AB |
KL |
ADE đều. |
Chứng minh (Hình vẽ dưới đây)
Vì AD là tia phân giác góc A (giả thiết)
Nên (tính chất tia phân giác của một góc)
Mà nên
Lại có DE // AB (giả thiết) nên (hai góc so le trong)
Do đó tam giác ADE có
Suy ra tam giác ADE là tam giác cân có một góc bằng 60°.
Suy ra tam giác ADE là tam giác đều.
Vậy tam giác ADE là tam giác đều.
Lời giải:
GT |
ABC vuông cân tại A M là trung điểm của cạnh huyền BC |
KL |
MAB vuông cân. |
Chứng minh (Hình vẽ dưới đây)
+) Tam giác ABC là tam giác vuông cân tại A (giả thiết) nên AB = AC và
Xét tam giác ABM và tam giác ACM có:
AM là cạnh chung
MB = MC (M là trung điểm của BC)
AB = AC (chứng minh trên)
Do đó ABM = ACM (c.c.c)
Suy ra (hai góc tương ứng)
Nên tia AM là tia phân giác của góc A
Do đó
+) Xét tam giác MAB có
Do đó tam giác MAB cân tại M. (1)
Lại có (hai góc tương ứng của ABM = ACM)
Mà (tính chất hai góc kề bù)
Do đó
Nên tam giác MAB vuông tại M. (2)
Từ (1) và (2) suy ra tam giác MAB vuông cân tại M.
a) AD // BE và BD // CE;
b)
c) AE = CD.
Lời giải:
GT |
ABD đều, BCE đều A, B, C thẳng hàng |
KL |
a) AD // BE và BD // CE; b) c) AE = CD. |
Chứng minh (Hình 76):
a) Vì tam giác ABD đều (giả thiết)
Nên AB = BD = AD và
Tam giác BCE đều (giả thiết)
Nên BC = CE = BE và
Vì mà hai góc này ở vị trí đồng vị
Nên AD // BE (dấu hiệu nhận biết hai đường thẳng song song)
Vì mà hai góc này ở vị trí đồng vị
Nên BD // CE (dấu hiệu nhận biết hai đường thẳng song song)
Vậy AD // BE và BD // CE.
b) Vì và là hai góc kề bù nên (tính chất hai góc kề bù)
Suy ra
Tương tự ta cũng có (tính chất hai góc kề bù)
Nên
Vậy
c) Xét tam giác ABE và tam giác DBC có:
AB = DB (chứng minh trên)
(chứng minh trên)
BE = BC (chứng minh trên)
Do đó ABE = DBC (c.g.c)
Suy ra AE = CD (hai cạnh tương ứng)
Vậy AE = CD.
Tính độ nghiêng của mái nhà so với mặt phẳng nằm ngang trong mỗi trường hợp sau:
a) Góc ở đỉnh A là (khoảng) 120° đối với mái nhà lợp bằng ngói;
b) Góc ở đỉnh A là (khoảng) 140° đối với mái nhà lợp bằng fibro xi măng;
c) Góc ở đỉnh A là (khoảng) 148° đối với mái nhà lợp bằng tôn.
Lời giải:
Tam giác ABC cân tại A nên
Xét tam giác ABC có (tổng ba góc trong một tam giác)
Suy ra
Hay
Do đó
a) Góc ở đỉnh A là (khoảng) 120° đối với mái nhà lợp bằng ngói nên
Do đó
Vậy độ nghiêng của mái nhà so với mặt phẳng nằm ngang trong trường hợp này là 30°.
b) Góc ở đỉnh A là (khoảng) 140° đối với mái nhà lợp bằng fibro xi măng nên
Do đó
Vậy độ nghiêng của mái nhà so với mặt phẳng nằm ngang trong trường hợp này là 20°.
c) Góc ở đỉnh A là (khoảng) 148° đối với mái nhà lợp bằng tôn nên
Do đó
Vậy độ nghiêng của mái nhà so với mặt phẳng nằm ngang trong trường hợp này là 16°.
Xem thêm các bài giải SGK Toán lớp 7 Cánh diều hay, chi tiết:
Giải SGK Toán 7 Bài 6: Trường hợp bằng nhau thứ ba của tam giác: góc – cạnh – góc
Giải SGK Toán 7 Bài 7: Tam giác cân
Giải SGK Toán 7 Bài 8: Đường vuông góc và đường xiên
Giải SGK Toán 7 Bài 9: Đường trung trực của một đoạn thẳng
Giải SGK Toán 7 Bài 10: Tính chất ba đường trung tuyến của tam giác
Lý thuyết Tam giác cân
1. Định nghĩa
Tam giác cân là tam giác có hai cạnh bằng nhau.
Cho tam giác cân ABC có AB = AC. Khi đó, ta gọi:
• Tam giác ABC là tam giác cân tại A;
• AB, AC là các cạnh bên và BC là cạnh đáy;
• là các góc ở đáy và là góc ở đỉnh.
Ví dụ: Tam giác DEF như hình vẽ.
Tam giác DEF là tam giác cân không? Vì sao? Nếu là tam giác cân hãy nêu các cạnh bên, cạnh đáy, các góc ở đáy và góc ở đỉnh của tam giác.
Hướng dẫn giải:
+ Quan sát hình vẽ ta thấy DE = DF = 8 cm
Xét ∆DEF ta có: DE = DF = 8 cm
Nên ∆DEF cân tại D
Vậy ∆DEF là tam giác cân tại D.
+ Tam giác DEF cân tại D có:
• DE, DF là các cạnh bên và EF là cạnh đáy;
• là các góc ở đáy và là góc ở đỉnh.
Trong một tam giác cân, hai góc ở đáy bằng nhau.
Ví dụ:
Cho ∆ABC cân tại A có (hình 2)
Ví dụ: Cho ∆MNP có MN = MP.
a) Chứng minh
b) Giả sử . Tính số đo góc N và góc P.
Hướng dẫn giải
a) Vì ∆MNP có MN = MP nên ∆MNP cân tại M
Do đó (tính chất tam giác cân)
Vậy
b) ∆MNP có (định lí tổng ba góc trong một tam giác)
Mà nên ta có:
Hay (1)
Theo phần a ta có: (2)
Từ (1) và (2) ta có:
Vậy
Chú ý:
+ Tam giác vuông có hai cạnh góc vuông bằng nhau được gọi là tam giác vuông cân.
+ Trong tam giác vuông cân, mỗi góc ở đáy bằng 45°.
Ví dụ:
∆ABC vuông cân tại A (hình vẽ bên dưới) có:
– Nếu một tam giác có hai cạnh bằng nhau thì tam giác đó là tam giác cân.
– Nếu một tam giác có hai góc bằng nhau thì tam giác đó là tam giác cân.
Chú ý:
+ Tam giác có ba cạnh bằng nhau là tam giác đều.
+ Tam giác cân có một góc bằng 60° là tam giác đều.
Ví dụ: Cho tam giác ABC như hình vẽ dưới đây.
Chứng minh tam giác ABC cân tại A.
Hướng dẫn giải
Xét ∆ABC có: (định lí tổng ba góc trong một tam giác)
Hay
Suy ra:
Xét ∆ABC có
Do đó ∆ABC cân tại A (dấu hiệu nhận biết)
Vậy ∆ABC cân tại A.
Ví dụ: Cho tam giác DEF có DE = DF.
a) Chứng minh: ∆DEF cân tại D.
b) Giả sử . Chứng minh: ∆DEF là tam giác đều.
Hướng dẫn giải:
a) Vì ∆DEF có DE = DF nên ∆DEF cân tại D
Vậy ∆DEF cân tại D.
b) Theo phần a ta có: ∆DEF cân tại D
Lại có
Do đó tam giác DEF là tam giác đều.
4. Vẽ tam giác cân
Ví dụ: Dùng thước thẳng (có chia đơn vị) và compa vẽ tam giác HEG cân tại H có cạnh bên HE = HG = a
Để vẽ tam giác HEG, ta làm theo các bước:
– Bước 1: Vẽ đoạn thẳng EG.
– Bước 2: Vẽ cung tròn tâm E bán kính a và cung tròn tâm G bán kính a. Hai cung tròn cắt nhau tại H.
– Bước 3: Vẽ các đoạn HE, HG. Ta nhận được tam giác HEG cân tại H.