Với giải Bài 1 trang 94 Toán lớp 7 Cánh diều chi tiết trong Bài 7: Tam giác cân giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 7. Mời các bạn đón xem:
Giải bài tập Toán lớp 7 Bài 7: Tam giác cân
Bài 1 trang 94 Toán 7 Tập 2: Cho tam giác ABC cân tại A có M là trung điểm của cạnh AC và N là trung điểm của cạnh AB. Chứng minh BM = CN.
Lời giải:
GT |
ABC cân tại A M, N lần lượt là trung điểm cạnh AC, AB |
KL |
BM = CN. |
Chứng minh (Hình vẽ dưới đây)
Tam giác ABC cân tại A (giả thiết) nên và AB = AC (1)
Mà M là trung điểm cạnh AC (giả thiết) nên AM = MC (2)
N là trung điểm cạnh AB (giả thiết) nên AN = NB (3)
Từ (1), (2) và (3) suy ra AM = MC = AN = NB
Xét tam giác BNC và tam giác CMB có:
BN = CM (chứng minh trên)
(chứng minh trên)
BC là cạnh chung
Do đó BNC = CMB (c.g.c)
Suy ra CN = BM (hai cạnh tương ứng)
Vậy BM = CN.
Xem thêm các bài giải Toán lớp 7 Cánh diều hay, chi tiết khác:
Xem thêm các bài giải SGK Toán lớp 7 Cánh diều hay, chi tiết:
Giải SGK Toán 7 Bài 6: Trường hợp bằng nhau thứ ba của tam giác: góc – cạnh – góc
Giải SGK Toán 7 Bài 7: Tam giác cân
Giải SGK Toán 7 Bài 8: Đường vuông góc và đường xiên
Giải SGK Toán 7 Bài 9: Đường trung trực của một đoạn thẳng
Giải SGK Toán 7 Bài 10: Tính chất ba đường trung tuyến của tam giác