Bài 4 trang 108 Toán 7 Tập 1 | Cánh diều Giải toán lớp 7

4.4 K

Với giải Bài 4 trang 108 Toán lớp 7 Cánh diều chi tiết trong Bài tập cuối chương 4 giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 7. Mời các bạn đón xem:

Giải bài tập Toán lớp 7 Bài tập cuối chương 4

Bài 4 trang 108 Toán lớp 7: Quan sát Hình 54, trong đó Cx song song với AB, đường thẳng BC cắt đường thẳng DE tại F

a) Tính số đo góc BCx.

b) Chứng minh rằng Cx song song với DE.

c) Tính số đo góc BCD.

Giải SGK Toán 7 (Cánh diều) Bài tập cuối chương 4 (ảnh 1)

Phương pháp giải:

+ Sử dụng dấu hiệu nhận biết 2 đường thẳng song song: Nếu một đường thẳng cắt 2 đường thẳng tạo ra một cặp góc so le trong hoặc cặp góc đồng vị bằng nhau thì 2 đường thẳng đó song song

+ Chú ý: 2 đường thẳng cùng vuông góc với đường thẳng thứ ba thì song song với nhau

2 đường thẳng cùng song song với đường thẳng thứ ba thì thì song song với nhau

+ Sử dụng tính chất 2 đường thẳng song song: Nếu một đường thẳng cắt 2 đường thẳng song song thì 2 góc so le trong bằng nhau, 2 góc đồng vị bằng nhau.

+ Nếu tia Om nằm trong góc xOy thì xOm^+mOy^=xOy^

Lời giải:

GT

AB ⊥ AE tại A,

DE ⊥ AE tại E,

Cx // AB, BC cắt DE tại F

ABC^=45°, CDE^=60°

KL

a) BCx^=?

b) Cx // DE.

c) BCD^=?

a) Vì Cx // AB (GT) nên ABC^=BCx^ (hai góc so le trong)

ABC^=BCx^ (GT)

Do đó BCx^=45°.

b) Vì AB ⊥ AE nên BAE^=90o

AEDE nên AED^=90o

Khi đó, BAE^+AED^=90o+90o=180o

BAE^AED^ là hai góc trong cùng phía.

Suy ra AB // DE (dấu hiệu nhận biết)

Do đó ABF^=BFD^=45° (hai góc so le trong)

Suy ra BCx^=BFD^=45°

Mà hai góc BCx^BFD^ ở vị trí so le trong

Nên Cx // DE (dấu hiệu nhận biết).

b) Theo câu b: Cx // DE nên DCx^=CDE^=60o (hai góc so le trong).

Vì tia Cx nằm giữa hai tia CB và CD nên:

BCD^=BCx^+DCx^=45o+60o=105o

Vậy BCD^=105o

Bài tập vận dụng:

Bài 1. Biết góc xOz và xOt là hai góc kề bù. Hãy tính góc xOt.

Hướng dẫn giải

Vì góc xOz và góc xOt là hai góc kề bù nên xOz^+xOt^=180°.

Suy ra 75°+xOt^=180° suy ra xOt^=180°75°=105°.

Vậy xOt^=105°.

Bài 2. Cho định lý : “Nếu một đường thẳng cắt hai đường thẳng song song thì hai góc đồng vị bằng nhau”. 

a) Vẽ hình minh họa nội dung định lý trên.

b) Viết giả thiết, kết luận của định lý trên.

c) Chứng minh định lý trên.

Hướng dẫn giải

a)

b)

GT

a // b, c cắt a tại A, c cắt b tại B

A1^,  B1^ là hai góc đồng vị.

KL

A1^= B1^

 c) Chứng minh

Qua điểm B kẻ đường thẳng b’ sao cho góc B2^=A1^.

Khi đó đường thẳng c tạo với hai đường thẳng a và b’ hai góc đồng vị bằng nhau.

Theo dấu hiệu nhận biết hai đường thẳng song song, ta có a và b’ song song với nhau.

Suy ra qua B có hai đường thẳng b, b’ cùng song song với a.

Theo Tiên đề Euclid thì hai đường thẳng b’ và b trùng nhau.

Từ đó suy ra B2^=A1^ (vì cùng bằng B2^).

Bài 3. Tìm x trong hình vẽ

Hướng dẫn giải

Góc aOc và góc cOb kề bù, mà cOb^=90° (góc vuông).

Nên aOc^=180°cOb^=180°90°=90°.

Ta có góc aOm và góc mOc là hai góc kề nhau.

Nên aOc^=aOm^+mOc^, mà aOc^=90° 

Suy ra: mOc^=aOc^aOm^=90°30°=60°.

Vì góc mOc và góc nOd đối đỉnh nên ta có x=nOd^=mOc^=60°.

Vậy x=60°.

Xem thêm các bài giải Toán lớp 7 Cánh diều hay, chi tiết khác:

Bài 1 trang 108 Toán lớp 7: a) Cho một ví dụ về hai góc kề nhau, hai góc kề bù, hai góc đối đỉnh...

Bài 2 trang 108 Toán lớp 7: a) Hai góc có tổng số đo bằng 180  có phải là hai góc kề bù hay không?...

Bài 3 trang 108 Toán lớp 7: Tìm cặp đường thẳng song song trong mỗi hình 53a, 53b, 53c, 53d và giải thích vì sao...

Bài 5 trang 108 Toán lớp 7: Quan sát Hình 55, trong đó mq // xt...

Xem thêm các bài giải SGK Toán lớp 7 Cánh diều hay, chi tiết:

Bài 1: Góc ở vị trí đặc biệt

Bài 2: Tia phân giác của một góc

Bài 3: Hai đường thẳng song song

Bài 4: Định lí

Bài tập cuối chương 4

Đánh giá

0

0 đánh giá