Với giải ý b Bài 72 trang 107 SBT Toán lớp 10 Cánh diều chi tiết trong Bài ôn tập chương 4 giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 10. Mời các bạn đón xem:
Giải sách bài tập Toán lớp 10 Bài ôn tập chương 4
Bài 72 trang 107 SBT Toán 10 Tập 1: Cho tam giác ABC có AB = 4, AC = 6, . Tính (làm tròn kết quả đến hàng đơn vị):
b) Bán kính đường tròn ngoại tiếp R;
c) Diện tích của tam giác ABC;
d) Độ dài đường cao xuất phát từ A;
e) với M là trung điểm của BC.
Lời giải:
b) Áp dụng định lí sin trong tam giác, ta có:
⇔ .
Vậy bán kính đường tròn ngoại tiếp tam giác ABC là 3.
c) Áp dụng công thức tính diện tích tam giác, ta được:
Vậy diện tích của tam giác ABC là (đvdt).
d) Gọi AH là đường cao của tam giác kẻ từ đỉnh A
Ngoài ra diện tích tam giác ABC là:
Theo ý c) ta tính được diện tích tam giác là
Do đó ta có:
⇔
Vậy độ dài đường cao xuất phát từ A là 4.
e) Ta có:
Vì M là trung điểm của BC nên
Khi đó:
Vậy và .
Xem thêm các bài giải sách bài tập Toán lớp 10 Cánh diều hay, chi tiết khác:
Bài 67 trang 106 SBT Toán 10 Tập 1: Cho góc nhọn α. Biểu thức (sinα . cotα)2 + (cosα . tanα)2 bằng:...
Bài 68 trang 106 SBT Toán 10 Tập 1: Cho các vectơ . Phát biểu nào sau đây là đúng?...
Bài 69 trang 106 SBT Toán 10 Tập 1: Cho tứ giác ABCD. Biểu thức bằng:...
Bài 70 trang 106 SBT Toán 10 Tập 1: Cho góc nhọn α. Biểu thức tanα . tan(90°– α) bằng:...
Bài 73 trang 107 SBT Toán 10 Tập 1: Cho tam giác ABC. Chứng minh rằng ...
Bài 74 trang 107 SBT Toán 10 Tập 1: Cho tam giác ABC có AB = 5, BC = 6, CA = 7. Tính:...
Bài 78 trang 107 SBT Toán 10 Tập 1: Cho hai vectơ và . Tính ...
Bài 79 trang 108 SBT Toán 10 Tập 1: a) Chứng minh đẳng thức với và là hai vectơ bất kì...
Xem thêm các bài giải SBT Toán 10 Cánh diều hay, chi tiết khác:
Bài 6: Tích vô hướng của hai vectơ
Bài 1: Quy tắc cộng. Quy tắc nhân. Sơ đồ hình cây