Với giải Bài 71 trang 106 SBT Toán lớp 10 Cánh diều chi tiết trong Bài ôn tập chương 4 giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 10. Mời các bạn đón xem:
Giải sách bài tập Toán lớp 10 Bài ôn tập chương 4
Bài 71 trang 106 SBT Toán 10 Tập 1: Cho α thỏa mãn . Tính cosα, tanα, cotα, sin(90° – α), cos(90° – α), sin(180° – α), cos(180° – α) trong các trường hợp sau:
a) 0° < α < 90°;
b) 90° < α < 180°;
Lời giải:
Ta có:
a) Vì 0° < α < 90° nên
⇒
⇒
Áp dụng công thức lượng giác của hai góc bù nhau, ta được:
b) Vì 90° < α < 180° nên
⇒
⇒
Áp dụng công thức lượng giác của hai góc bù nhau, ta được:
SỐ ĐO CỦA CUNG VÀ GÓC LƯỢNG GIÁC
1. Độ và radian
a) Đơn vị radian
Trên đường tròn tùy ý, cung có độ dài bằng bán kính được gọi là cung có số đo 1 rad.
b) Quan hệ giữa độ và radian
c) Độ dài của một cung tròn
Trên đường tròn bán kính R, cung nửa đường tròn có số đo là π rad và có độ dài là πR. Vậy cung có số đo α rad của đường tròn bán kính R có độ dài
l = Rα.
2. Số đo của một cung lượng giác
Số đo của một cung lượng giác (A ≠ M) là một số thực âm hay dương.
Kí hiệu số đo của cung là sđ .
Ghi nhớ
Số đo của các cung lượng giác có cùng điểm đầu và điểm cuối sai khác nhau một bội của 2π.
Ta viết
sđ = α + k2π , k ∈ Z
trong đó α là số đo của một cung lượng giác tùy ý có điểm đầu là A, điểm cuối là M
3. Số đo của một góc lượng giác
Số đo của góc lượng giác (OA, OC) là số đo của cung lượng giác tương ứng.
Chú ý Vì mỗi cung lượng giác ứng với một góc lượng giác và ngược lại, đồng thời số đo của các cung và góc lượng giác tương ứng là trùng nhau, nên từ nay về sau khi ta nói về cung thì điều đó cũng đúng cho góc và ngược lại.
4. Biểu diễn cung lượng giác trên đường tròn lượng giác
Chọn điểm gốc A(1; 0) làm điểm đầu của tất cả các cung lượng giác trên đường tròn lượng giác. Để biểu diễn cung lượng giác có số đo α trên đường tròn lượng giác ta cần chọn điểm cuối M của cung này. Điểm cuối M được xác định bởi hệ thức sđ = α
Xem thêm các bài giải sách bài tập Toán lớp 10 Cánh diều hay, chi tiết khác:
Bài 67 trang 106 SBT Toán 10 Tập 1: Cho góc nhọn α. Biểu thức (sinα . cotα)2 + (cosα . tanα)2 bằng:...
Bài 68 trang 106 SBT Toán 10 Tập 1: Cho các vectơ . Phát biểu nào sau đây là đúng?...
Bài 69 trang 106 SBT Toán 10 Tập 1: Cho tứ giác ABCD. Biểu thức bằng:...
Bài 70 trang 106 SBT Toán 10 Tập 1: Cho góc nhọn α. Biểu thức tanα . tan(90°– α) bằng:...
Bài 73 trang 107 SBT Toán 10 Tập 1: Cho tam giác ABC. Chứng minh rằng ...
Bài 74 trang 107 SBT Toán 10 Tập 1: Cho tam giác ABC có AB = 5, BC = 6, CA = 7. Tính:...
Bài 78 trang 107 SBT Toán 10 Tập 1: Cho hai vectơ và . Tính ...
Bài 79 trang 108 SBT Toán 10 Tập 1: a) Chứng minh đẳng thức với và là hai vectơ bất kì...
Xem thêm các bài giải SBT Toán 10 Cánh diều hay, chi tiết khác:
Bài 6: Tích vô hướng của hai vectơ
Bài 1: Quy tắc cộng. Quy tắc nhân. Sơ đồ hình cây