Cho tam giác ABC vuông tại đỉnh A. Gọi M là trung điểm của BC và D là điểm nằm trên tia đối của tia MA sao cho MD = MA

4.4 K

Với giải Bài 4.44 trang 69 SBT Toán lớp 7 Kết nối tri thức chi tiết trong Bài 16: Tam giác cân. Đường trung trực của đoạn thẳng giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 7. Mời các bạn đón xem:

Giải sách bài tập Toán lớp 7 Bài 16: Tam giác cân. Đường trung trực của đoạn thẳng

Bài 4.44 trang 69 SBT Toán 7 Tập 1: Cho tam giác ABC vuông tại đỉnh A. Gọi M là trung điểm của BC và D là điểm nằm trên tia đối của tia MA sao cho MD = MA (H.4.49). Chứng minh rằng:

a) ∆ABD vuông tại B.

b) ∆ABD = ∆BAC.

c) Các tam giác AMB, AMC là các tam giác cân tại đỉnh M.

Sách bài tập Toán 7 Bài 16: Tam giác cân. Đường trung trực của đoạn thẳng - Kết nối tri thức (ảnh 1)

Hướng dẫn giải

a) Xét tam giác AMC và tam giác DMB có:

MA = MD (gt)

MB = MC (M là trung điểm của BC)

AMC^=DMB^ (hai góc đối đỉnh)

Do đó, ∆AMC = ∆DMB (c – g – c).

Suy ra DBM^=ACM^ (hai góc tương ứng).

Do tam giác ABC vuông tại A nên ABC^+ACM^=ABC^+ACB^=90°.

Khi đó, ta có: ABD^=ABC^+CBD^=ABC^+DBM^ABC^+ACM^=90°.

Suy ra ABD^=90°.

Vậy tam giác ABD vuông tại B.

b) Xét tam giác vuông ABD và tam giác vuông BAC có:

BD = AC (do ∆AMC = ∆DMB)

AB: cạnh chung

Do đó, ∆ABD = ∆BAC (hai cạnh góc vuông).

c) Do tam giác ABC vuông tại A nên AC  AB tại A.

Tam giác ABD vuông tại B nên DB  AB tại B.

Suy ra AC // DB (do cùng vuông góc với AB).

BDA^=CAD^ (hai góc so le trong).

Lại có: ACB^=BDA^ (do ∆ABD = ∆BAC).

Do đó, CAD^=ACB^, hay CAM^=ACM^.

Suy ra tam giác AMC cân tại đỉnh M.

Khi đó MA = MC.

Mà MB = MC (do M là trung điểm của BC).

Nên MA = MB = MC.

Do đó, tam giác AMB cân tại đỉnh M.

Xem thêm các bài giải SBT Toán 7 Kết nối tri thức hay, chi tiết khác:

Bài 4.41 trang 68 SBT Toán 7 Tập 1: Trong những tam giác dưới đây (H.4.46), tam giác nào là tam giác cân, cân tại đỉnh nào? Vì sao?...

Bài 4.42 trang 68 SBT Toán 7 Tập 1: Tính số đo các góc còn lại trong các tam giác cân dưới đây (H.4.47)...

Bài 4.43 trang 69 SBT Toán 7 Tập 1: Tam giác ABC có hai đường cao BE và CF bằng nhau (H.4.48). Chứng minh rằng tam giác ABC cân tại đỉnh A...

Bài 4.45 trang 69 SBT Toán 7 Tập 1: Cho tam giác ABC là tam giác cân đỉnh A. Chứng minh rằng:...

Bài 4.46 trang 69 SBT Toán 7 Tập 1: Cho các điểm A, B, C, D, E như Hình 4.51. Chứng minh rằng:...

Bài 4.47 trang 70 SBT Toán 7 Tập 1: Cho tam giác ABH vuông tại đỉnh H có ABH^=60°. Trên tia đối của tia HB lấy điểm C sao cho HB = HC (H.4.52). Chứng minh rằng ∆ABC là tam giác đều và BH = AB2...

Bài 4.48 trang 70 SBT Toán 7 Tập 1: Đường thẳng d trong hình nào dưới đây là trung trực của đoạn thẳng AB?...

Bài 4.49 trang 70 SBT Toán 7 Tập 1: Cho A là một điểm tùy ý nằm trên đường trung trực của đoạn thẳng BC sao cho A không thuộc BC. Khẳng định nào dưới đây là đúng?...

Bài 4.50 trang 70 SBT Toán 7 Tập 1: Cho tam giác ABC cân tại đỉnh A có đường cao AH. Cho M là một điểm tùy ý trên đường thẳng AH sao cho M không trùng với A (H.4.54). Chứng minh rằng: MBA^=MCA^...

Xem thêm các bài giải SBT Toán lớp 7 Kết nối tri thức hay, chi tiết khác:

Bài 15: Các trường hợp bằng nhau của tam giác vuông

Bài 16: Tam giác cân. Đường trung trực của đoạn thẳng

Ôn tập chương 4

Bài 17: Thu thập và phân loại dữ liệu

Bài 18: Biểu đồ hình quạt tròn

Đánh giá

0

0 đánh giá