Với giải sách bài tập Toán 10 Bài 5: Tích của một số với một vectơ sách Cánh diều hay, chi tiết giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 10. Mời các bạn đón xem:
Giải SBT Toán lớp 10 Bài 5: Tích của một số với một vectơ
Giải SBT Toán 10 trang 99 Tập 1
Lời giải:
Đáp án đúng là B
Vì O là trung điểm của AB nên OA = OB = AB hay AB = 2OA = 2OB.
Ta có: và là hai vectơ ngược hướng nên . Do đó A và D sai.
Ta lại có: và là hai vectơ cùng hướng nên . Do đó B đúng và C sai.
Lời giải:
Đáp án đúng là D
Vì G là trọng tâm tam giác ABC và AM là đường trung tuyến nên ta có:
AG = AM hay AM = 3GM
Ta có hai vectơ và cùng hướng nên .
Vậy chọn D.
Bài 49 trang 99 SBT Toán 10 Tập 1: Cho . Khẳng định nào sau đây là sai?
A. và cùng phương.
B. và cùng phương.
C. và không cùng hướng.
D. và ngược hướng.
Lời giải:
Đáp án đúng là C
Vì 4 > 0 nên và cùng hướng nên và cùng phương. Do đó A đúng, C sai.
Vì – 4 < 0 nên và ngược hướng nên và cùng phương. Do đó B, D đúng.
Lời giải:
Đáp án đúng là A
Vì điểm C nằm giữa hai điểm A, B nên hai vectơ cùng hướng.
Do đó .
Vậy chọn A
Lời giải:
Đáp án đúng là B
Vì điểm A nằm giữa hai điểm B và C nên hai vectơ ngược hướng.
Do đó .
Vậy chọn B
Giải SBT Toán 10 trang 100 Tập 1
Lời giải:
a) Ta có:
⇒ AM // CB, AM = CB và M, B cùng phía so với bờ AC
⇒ ACBM là hình bình hành
Vậy điểm M thỏa mãn ACBM là hình bình hành.
b) Gọi N’ là trung điểm của BC
Khi đó ta có: hay
⇒
⇒ A là trung điểm của đoạn NN’
Vậy N là điểm đối xứng với N’ qua A.
c) Xét
⇔
⇔
⇒ Điểm P là điểm thỏa mãn PC // AB, P nằm cùng phía với A bờ BC sao cho 2PC = AB.
Vậy điểm P là điểm nằm trên đường thẳng song song với AB, nằm cùng phía với A so với BC sao cho 2PC = AB.
Lời giải:
Xét tam giác ABC, có:
Ta có: D nằm giữa B và C nên và ngược hướng
Lời giải:
Ta có:
Ta có hay
Do đó M, N, P thẳng hàng.
Vậy ; ; và ba điểm M, N, P thẳng hàng.
Lời giải:
Ta có:
= = .
Để ba điểm D, E, N thẳng hàng thì tồn tại t ∈ ℝ sao cho
⇔
⇔
⇔ ⇔
Do đó ba điểm D, E, N thẳng hàng khi k = .
Vậy , , và với k = thì ba điểm D, E, N thẳng hàng.
Lời giải:
Đặt (t > 0)
⇔
⇒ (vì các điểm A’, B’, C’ lần lượt thuộc các cạnh AB, BC, CA)
Gọi G là trọng tâm tam giác ABC nên
Ta có:
Suy ra G cũng là trọng tâm của tam giác A’B’C’.
Xem thêm các bài giải SBT Toán 10 Cánh diều hay, chi tiết khác:
Bài 4: Tổng và hiệu của hai vectơ
Bài 6: Tích vô hướng của hai vectơ
Bài 1: Quy tắc cộng. Quy tắc nhân. Sơ đồ hình câyLý thuyết Tích của một số với một vectơ
1. Định nghĩa
Cho một số k ≠ 0 và vectơ ≠ . Tích của một số k với vectơ là một vectơ, kí hiệu là k, được xác định như sau:
+ cùng hướng với nếu k > 0, ngược hướng với nếu k < 0;
+ có độ dài bằng .
Quy ước: 0 = , k =
Phép lấy tích của một số với một vectơ gọi là phép nhân một số với một vectơ.
Ví dụ: Cho G là trọng tâm của tam giác ABC, D và E lần lượt là trung điểm của BC và AC. Tìm mối quan hệ của và ; mối quan hệ của và
Hướng dẫn giải
Khi đó ta có:
– Vì G là trọng tâm của tam giác ABC nên GA = 2GD.
Mà G nằm giữa A và D nên và là hai vectơ ngược hướng.
⇒ = (–2).
– Ta có: AD = 3GD.
Mà và là hai vectơ cùng hướng.
⇒ = 3.
Ví dụ: Cho vectơ có = 4. Tìm số thực x sao cho vectơ x có độ dài bằng 1 và cùng hướng với .
Hướng dẫn giải:
Ta có: = 1 ⇔ = 1 ⇔ = 1
⇔ =
Lại có vectơ x cùng hướng với vectơ nên x > 0
Suy ra x = .
Vậy x = là giá trị cần tìm.
2. Tính chất
Với hai vectơ bất kì , và hai số thực h, k, ta có:
+) k( + ) = k + k; k( – ) = k – k;
+) (h + k) = h + k;
+) h(k) = (hk);
+) 1 = ; (–1) = –.
Nhận xét: k = khi và chỉ khi k = 0 hoặc = .
Ví dụ: Tính:
a) 5 + 5;
b) 4 + 6;
c) 4(2) + 2 – 3.
Hướng dẫn giải:
3. Một số ứng dụng
3.1. Trung điểm của đoạn thẳng
Nếu I là trung điểm của đoạn thẳng AB thì với điểm M bất kì.
Chứng minh:
Vì I là trung điểm của đoạn thẳng AB nên =
Suy ra:
=
= =
= = .
⇒ = (đpcm).
Ví dụ: Cho tứ giác ABCD. Gọi M, N lần lượt là trung điểm của AC, BD. Chứng minh .
Hướng dẫn giải:
Vì M, N lần lượt là trung điểm của AC, BD nên ta có:
⇒ = = = .
⇒ (đpcm).
3.2. Trọng tâm của tam giác
Nếu G là trọng tâm của tam giác ABC thì với điểm M bất kì.
Ví dụ: Gọi G và G’ lần lượt là trọng tâm tam giác ABC và A’B’C’. Chứng minh rằng: .
Hướng dẫn giải:
Vì G và G’ lần lượt là trọng tâm tam giác ABC và A’B’C’ nên:
và
Theo quy tắc cộng vectơ ta có:
(1)
(2)
(3)
Cộng vế với vế của (1), (2) và (3) ta có:
=
=
=
= =
⇒ (đpcm).
3.3. Điều kiện để hai vectơ cùng phương. Điều kiện để ba điểm thẳng hàng
– Điều kiện cần và đủ để hai vectơ và ( ≠ 0) cùng phương là có một số thực k để = k.
– Điều kiện cần và đủ để ba điểm phân biệt A, B, C thẳng hàng là có số thực k để .
Nhận xét: Trong mặt phẳng, cho hai vectơ và không cùng phương. Với mỗi vectơ có duy nhất cặp số (x; y) thoả mãn .
Ví dụ: Cho tam giác ABC. Đặt , . Dựng các điểm M, N sao cho ; .
a) Phân tích , theo các vectơ và .
b) Gọi I là điểm thỏa mãn: . Chứng minh I, A, N thẳng hàng.
Hướng dẫn giải:
a) Ta có:
+) = = = – .
+) Vì ⇒ CN = 2BC ⇒ BC = BN ⇒ BN = 3BC.
⇒ .
⇒ = = = =
= = –2 + 3.
b) Ta có:
= = = + – = – =
⇒ = .
⇒ I, A, N thẳng hàng.