Sách bài tập Toán 10 Bài 2 (Chân trời sáng tạo): Đường thẳng trong mặt phẳng tọa độ

3.1 K

Với giải sách bài tập Toán 10 Bài 2: Đường thẳng trong mặt phẳng tọa độ sách Chân trời sáng tạo hay, chi tiết giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 10. Mời các bạn đón xem:

Giải SBT Toán lớp 10 Bài 2: Đường thẳng trong mặt phẳng tọa độ

Giải SBT Toán 10 trang 65 Tập 2

Các bài toán sau đây được xét trong mặt phẳng Oxy.

Bài 1 trang 65 SBT Toán 10 tập 2: Tìm các giá trị của tham số a, b, c để phương trình ax + by + c = 0 có thể biểu diễn được các đường thẳng trong hình đưới đây.

Sách bài tập Toán 10 Bài 2: Đường thẳng trong mặt phẳng tọa độ - Chân trời sáng tạo (ảnh 1)

Lời giải:

a) Giả sử đường thẳng cần tìm có dạng y = a’x + b’

Đường thẳng đi qua điểm A32;0  ; B(0; 3)

Ta có hệ  32a'+b'=00.a'+b'=3a'=2b'=3

Suy ra đường thẳng có dạng y = 2x + 3   2x – y + 3 = 0

Vì vậy a = 2; b = – 1; c = 3.

b) Giả sử đường thẳng cần tìm có dạng y = a’x + b’

Đường thẳng đi qua điểm A(1; 0) ; B(0; 1)

Ta có hệ  a'+b'=00.a'+b'=1a'=1b'=1

Suy ra đường thẳng có dạng y = – x + 1   x + y – 1 = 0

Vì vậy a = 1; b = 1; c = – 1.

c) Giả sử đường thẳng cần tìm có dạng y = a’x + b’

Đường thẳng đi qua điểm A(0; 3) và song song với trục hoành nên đường thẳng có dạng y c 3 = 0

Vì vậy a = 0; b = 1; c = – 3.

d) Giả sử đường thẳng cần tìm có dạng y = a’x + b’

Đường thẳng đi qua điểm A(– 2; 0) và song song với trục Oy nên đường thẳng có dạng x + 2 = 0.

Vì vậy a = 1; b = 0; c = 2.

Bài 2 trang 65 SBT Toán 10 tập 2: Lập phương trình tổng quát và phương trình tham số của đường thẳng d trong mỗi trường hợp sau:

a) d đi qua điểm M(2; 2) và có vectơ chỉ phương u  = (4; 7);

b) d đi qua điểm N(0; 1) và có vectơ pháp tuyến là n = (-5; 3);

c) d đi qua A(-2; -3) và có hệ số góc k = 3,

d) d đi qua hai điểm P(1; 1) và Q(3; 4).

Lời giải:

a) Đường thẳng d đi qua điểm M(2; 2) và có vectơ chỉ phương u  = (4; 7) nên ta có phương trình tham số của đường thẳng d là:  x=2+4ty=2+7t

Đường thẳng d đi qua điểm M(2; 2) và có vectơ chỉ phương u  = (4; 7) nên vectơ pháp tuyến của đường thẳng d là n  (7; –4) phương trình tổng quát của đường thẳng d là: 7(x – 2) – 4(y – 2) = 0  7x – 4y – 6 = 0

b) Đường thẳng d đi qua điểm N(0; 1) và có vectơ pháp tuyến là n = (– 5; 3) nên ta có phương trình tổng quát của đường thẳng d là: – 5(x – 0) + 3(y – 1) = 0  – 5x + 3y – 3 = 0.

Đường thẳng d đi qua điểm N(0; 1) và có vectơ pháp tuyến là n = (–5 ; 3) nên ta có vectơ chỉ của đường thẳng d là u (3; 5) phương trình tham số của đường thẳng d là: x=3ty=1+5t .

c) Đường thẳng d đi qua A(–2; –3) và có hệ số góc k = 3 nên phương trình tổng quát của đường thẳng d là: y = 3(x + 2) – 3  3x – y + 3 = 0.

Khi đó vectơ pháp tuyến của đường thẳng d là n3;1 suy ra vectơ chỉ phương u(1;3) . Vì vậy phương trình tham số của đường thẳng d là: x=2+ty=3+3t .

d) Đường thẳng d đi qua hai điểm P(1; 1) và Q(3; 4) nên vectơ chỉ phương u=PQ  = (2; 3) và có vectơ pháp tuyến là vectơ n  (3; – 2).

Phương trình tham số của đường thẳng d là: x=1+2ty=1+3t .

Phương trình tổng quát của đường thẳng d là: 3(x – 1) – 2(y – 1) = 0   3x – 2y – 1 = 0.

Giải SBT Toán 10 trang 66 Tập 2

Bài 3 trang 66 SBT Toán 10 Tập 2Cho tam giác ABC, biết A(1; 4), B(0; 1) và C(4; 3).

a) Lập phương trình tổng quát của đường thẳng BC.

b) Lập phương trình tham số của đường trung tuyến AM.

c) Lập phương trình tổng quát của đường cao AH.

Lời giải:

a) Đường thẳng BC có vectơ chỉ phương là vectơ u=12BC=(2;1)  và có vectơ pháp tuyến là vectơ  n=(1;2) nên phương trình tổng quát của đường thẳng d là: 1(x – 0) – 2(y – 1) = 0  x – 2y + 2 = 0.

b) Ta có M là trung điểm của BC nên toạ độ của M là: M(2; 2).

Đường thẳng AM có vectơ chỉ phương là vectơ u=AM = (1; – 2) nên phương trình tham số của đường thẳng AM là: x=1+ty=42t  

c) Đường cao AH đi qua điểm A(1; 4) và có vectơ pháp tuyến là n=12BC = (2; 1) nên phương trình tổng quát của đường cao AH là: 2(x – 1) + 1(y – 4) = 0  2x + y – 6 = 0.

Bài 4 trang 66 SBT Toán 10 Tập 2: Lập phương trình tổng quát của đường thẳng  trong mỗi trường hợp sau:

a)  đi qua M(3; 3) và song song với đường thẳng x + 2y – 2022 = 0;

b)  đi qua N(2; – 1) và vuông góc với đường thẳng 3x + 2y + 99 = 0.

Lời giải:

a) Đường thẳng  đi qua M(3; 3) và song song với đường thẳng x + 2y – 2022 = 0 nên đường thẳng ∆ có vectơ pháp tuyến là vectơ n (1; 2) phương trình tổng quát của đường thẳng ∆ là: 1(x – 3) + 2(y – 3) = 0   x + 2y – 9 = 0

b) Đường thẳng  đi qua N(2; –1) và vuông góc với đường thẳng 3x + 2y + 99 = 0 nên đường thẳng ∆ có vectơ pháp tuyến là vectơ n (2; – 3) phương trình tổng quát của đường thẳng ∆ là: 2(x – 2) – 3(y + 1) = 0  2x – 3y – 7 = 0.

Bài 5 trang 66 SBT Toán 10 Tập 2: Xét vị trí tương đối của các cặp đường thẳng d1 và d2 sau đây:

a) d1:2x+y+9=0  và d2:2x+3y9=0 ;

b) d1:x=2+ty=12t và d2:2x+y+10=0 ;

c) d1:x=1ty=85t và d2:5xy+3=0

Lời giải:

a) d1 và d2 có véc tơ pháp tuyến lần lượt là n1  (2; 1) và n2  (2; 3)

Ta có: a1.b2 – a2.b1 = 2.3 – 1.2 = 4 ≠ 0, suy ra véc tơ n1  và n2  là hai vectơ không cùng phương. Do đó d1 và d2 cắt nhau tại một điểm M.

Giải hệ phương trình  2x+y+9=02x+3y9=0 ta được M(- 9; 9).

Vậy hai đường thẳng d1 và d2 cắt nhau tại một điểm M.

b) Ta có d1 x=2+ty=12tsuy ra phương trình tổng quát của d1 là: 2x + y – 5 = 0

dvà d2 có vectơ pháp tuyến lần lượt là n1 (2; 1) và n2 (2; 1).

Ta có: a1.b2 – a2.b1 = 2.1 – 1.2 = 0, suy ra vectơ n1  và n2  là hai vectơ cùng phương. Do đó d1 và d2 song song hoặc trùng nhau. Ta lấy M(– 4; – 2) thuộc d2 , thay toạ độ M vào d1 ta được 2.(– 4) + (– 2) – 5 = – 15 ≠ 0 suy ra M không thuộc d1. Vậy d1 song song với d2.

c) Ta có d1x=1ty=85tt=x11t=y85x11=y855xy+3=0 suy ra phương trình tổng quát của d1 là: 5x – y + 3 = 0.

Khi đó d1 và d2 đều có phương trình tổng quát là 5x – y + 3 = 0

Vậy d1 trùng với d2.

Bài 6 trang 66 SBT Toán 10 Tập 2: Cho đường thẳng d có phương trình tham số: x=1+ty=2+2t. Tìm giao điểm của d với đường thẳng Δ:x+y2=0 .

Lời giải:

Ta có d: x=1+ty=2+2t

Suy ra phương trình tổng quát của đường thẳng d là: 2x – y = 0

Tạo độ giao điểm của d với đường thẳng ∆ là nghiệm của hệ phương trình:

 x+y2=02xy=0x=23y=43

Vậy toạ độ giao điểm của đường thẳng d với đường thẳng ∆ là: M23;43 .

Bài 7 trang 66 SBT Toán 10 Tập 2Tìm số đo của góc giữa hai đường thẳng d1 và d2 trong các trường hợp sau:

a) d1:5x3y+1=0 và d2:10x6y7=0 ;

b)  d1:7x3y+7=0 và d2:3x+7y10=0 ;

c)  d1:2x4y+9=0 và d2:6x2y2023=0 .

Lời giải:

a) d1 và d2 có vectơ pháp tuyến lần lượt là n1  (5; – 3) và n2 (10; – 6).

Ta có cosd1,d2=5.10+(3).(6)52+(3)2.102+(6)2=1 .

Suy ra (d1, d2) = 0o

b) d1 và d2 có véc tơ pháp tuyến lần lượt là n1  (7; – 3) và n2 (3; 7)

Ta có a1.a2 +b1.b2 = 7.3 + (– 3).7 = 0, suy ra (d1, d2) = 90o.

c) d1 và d2 có véc tơ pháp tuyến lần lượt là n1  (2; – 4) và n2 (6; – 2)

Ta có  cosd1,d2=2.6+(4).(2)22+(4)2.62+(2)2=22

Suy ra (d1, d2) = 45o.

Bài 8 trang 66 SBT Toán 10 Tập 2: Tính khoảng cách từ điểm M đến đường thẳng  trong các trường hợp sau:

a) M(2; 3) và Δ:8x6y+7=0

b) M(0;1) và Δ:4x+9y20=0

c) M(1; 1) và Δ:3y5=0

d) M(4; 9) và Δ:x25=0

Lời giải:

a) Ta có d(M,Δ)=8.26.3+782+(6)2=12 .

Vậy khoảng cách từ điểm M(2; 3) đến đường thẳng  là: 12 .

b) Ta có d(M,Δ)=4.0+9.12042+92=119797 .

Vậy khoảng cách từ điểm M(0;1) đến đường thẳng  là: 119797 .

c) Ta có d(M,Δ)=3.1532=23 .

Vậy khoảng cách từ điểm M(1; 1) đến đường thẳng  là: 23 .

d) Ta có d(M,Δ)=42512=21 .

Vậy khoảng cách từ điểm M(4; 9) đến đường thẳng  là: 21.

Bài 9 trang 66 SBT Toán 10 Tập 2Tìm c để đường thẳng Δ:4x3y+c=0  tiếp xúc với đường tròn (C) có tâm J(1; 2) và bán kính R = 3.

Lời giải:

Vì đường thẳng ∆ tiếp xúc với đường tròn (C) nên ta có  d(J,Δ)=R

 4.13.2+c42+(3)2=3

 2+c=15(1)2+c=15(2)

Xét phương trình (1) ta có – 2 + c = 15   c = 17

Xét phương trình (2) ta có – 2 + c = – 15   c = – 13

Vậy c = 17 hoặc c = – 13 thoả mãn bài toán.

Bài 10 trang 66 SBT Toán 10 Tập 2:  Tính khoảng cách giữa hai đường thẳng:

Δ:6x+8y11=0 và Δ':6x+8y1=0

Lời giải:

Ta có ∆ và ∆’ có vectơ pháp tuyến lần lượt là n1  (6; 8) và n2 (6; 8) hai vectơ này cùng phương. Do đó ∆ và ∆’ song song hoặc trùng nhau.

Dễ dàng nhận thấy ∆ và ∆’ song song với nhau, thật vậy:

Ta lấy  M0;118 thuộc ∆, thay tọa độ điểm M0;118  vào phương trình ∆’ ta được:

6.0 + 8. 118 – 1 = 10  0 nên M  ’.

Khi đó, ta có: d(Δ,Δ')=d(M,Δ')=6.0+8.118162+82=1 .

Vậy khoảng cách giữa hai đường thẳng ∆ và ∆’ bằng 1.

Bài 11 trang 66 SBT Toán 10 Tập 2: Một trạm viễn thông S có toạ độ (5; 1). Một người đang ngồi trên chiếc xe khách chạy trên đoạn cao tốc có dạng một đường thẳng  có phương trình 12x + 5y – 20 = 0. Tính khoảng cách ngắn nhất giữa người đó và trạm viễn thông S. Biết rằng mỗi đơn vị độ dài tương ứng với 1 km.

Lời giải:

Sách bài tập Toán 10 Bài 2: Đường thẳng trong mặt phẳng tọa độ - Chân trời sáng tạo (ảnh 1)

Giả sử người ngồi trên xe khách là điểm M đang di chuyển trên đường cao tốc có dạng là đường thẳng ∆ như hình vẽ. Ta thấy khoảng cách ngắn nhất giữa người đó và trạm viễn thông S khi người đó di chuyển đến điểm C và SC   ∆. Vậy khoảng cách ngắn nhất giữa người đó và trạm viễn thông S bằng đoạn SC = d(S, ∆).

Ta có  d(S,Δ)=12.5+5.120122+52=4513

Vậy khoảng cách ngắn nhất giữa người đó và trạm viễn thông S bằng 4513  km.

Xem thêm các bài giải SBT Toán 10 Chân trời sáng tạo hay, chi tiết khác:

Bài 1: Tọa độ của vectơ

Bài 3: Đường tròn trong mặt phẳng tọa độ

Bài 4: Ba đường conic trong mặt phẳng tọa độ

Bài tập cuối chương 9

Lý thuyết Đường thẳng trong mặt phẳng tọa độ

1. Phương trình đường thẳng

1.1. Vectơ chỉ phương và vectơ pháp tuyến của đường thẳng

Vectơ u được gọi là vectơ chỉ phương của đường thẳng ∆ nếu u0 và giá của u song song hoặc trùng với ∆.

Vectơ nđược gọi là vectơ pháp tuyến của đường thẳng ∆ nếu n0 và n vuông góc với vectơ chỉ phương của ∆.

Chú ý:

• Nếu đường thẳng ∆ có vectơ pháp tuyến n=a;b thì ∆ sẽ nhận u=b;a hoặc u=-b;a là một vectơ chỉ phương.

• Nếu u là vectơ chỉ phương của đường thẳng ∆ thì ku (k ≠ 0) cũng là vectơ chỉ phương của ∆.

• Nếu n là vectơ pháp tuyến của đường thẳng ∆ thì kn (k ≠ 0) cũng là vectơ pháp tuyến của ∆.

Ví dụ:

a) Cho đường thẳng d có vectơ chỉ phương u=23;13. Tìm một vectơ pháp tuyến của d.

b) Cho đường thẳng d’ có vectơ pháp tuyến n=3;7. Tìm ba vectơ chỉ phương của d’.

Hướng dẫn giải

a) Đường thẳng d có vectơ chỉ phương u=23;13.

Suy ra d cũng có vectơ chỉ phương 3u=2;1 và có vectơ pháp tuyến n=1;2.

Vậy d có vectơ pháp tuyến n=1;2.

b)

• d’ có vectơ pháp tuyến n=3;7.

Suy ra d’ có vectơ chỉ phương u=7;3-u=7;-3.

• d’ có vectơ chỉ phương u=7;3.

Suy ra d’ cũng có vectơ chỉ phương 2u=14;6.

Vậy ba vectơ chỉ phương của d’ là u=7;3u=7;32u=14;6.

1.2. Phương trình tham số của đường thẳng

Trong mặt phẳng Oxy, ta gọi:

x=x0+tu1y=y0+tu2   (với u12+u22>0,t)

là phương trình tham số của đường thẳng ∆ đi qua điểm M0(x0; y0), có vectơ chỉ phương u=u1;u2.

Chú ý: Cho t một giá trị cụ thể thì ta xác định được một điểm trên đường thẳng ∆ và ngược lại.

Ví dụ:

a) Viết phương trình tham số của đường thẳng d đi qua điểm M(1; 3) và nhận u=2;9 làm vectơ chỉ phương.

b) Trong các điểm A(2; 5), B(3; 12), C(–4; 6) thì điểm nào thuộc đường thẳng d?

Hướng dẫn giải

a) Đường thẳng d đi qua điểm M(1; 3) và có vectơ chỉ phương u=2;9.

Vậy phương trình tham số của đường thẳng d: x=1+2ty=3+9t.

b)

• Thay tọa độ điểm A vào phương trình tham số của đường thẳng d, ta được:

2=1+2t5=3+9tt=12t=29  (vô lý).

Khi đó A(2; 5)  d.

• Thay tọa độ điểm B vào phương trình tham số của đường thẳng d, ta được:

3=1+2t12=3+9tt=1t=1t=1.

Khi đó B(3; 12)  d.

• Thay tọa độ điểm C vào phương trình tham số của đường thẳng d, ta được:

4=1+2t6=3+9tt=52t=13  (vô lý).

Khi đó C(–4; 6)  d.

Vậy chỉ có điểm B thuộc đường thẳng d.

1.3. Phương trình tổng quát của đường thẳng

Trong mặt phẳng Oxy, mỗi đường thẳng đều có phương trình tổng quát dạng: ax + by + c = 0, với a và b không đồng thời bằng 0.

Chú ý:

• Mỗi phương trình ax + by + c = 0 (a và b không đồng thời bằng 0) đều xác định một đường thẳng có vectơ pháp tuyến n=a;b.

• Khi cho phương trình đường thẳng ax + by + c = 0, ta hiểu a và b không đồng thời bằng 0.

Ví dụ: Viết phương trình tổng quát của đường thẳng ∆ trong mỗi trường hợp sau:

a) Đường thẳng ∆ đi qua điểm H(2; 1) và có vectơ pháp tuyến n=2;1.

b) Đường thẳng ∆ đi qua điểm K(5; –8) và có vectơ chỉ phương u=3;4.

c) Đường thẳng ∆ đi qua hai điểm M(6; 3), N(9; 1).

Hướng dẫn giải

a) Đường thẳng ∆ đi qua điểm H(2; 1) và có vectơ pháp tuyến n=2;1 nên ta có phương trình tổng quát của ∆ là: –2(x – 2) – 1(y – 1) = 0

 –2x – y + 5 = 0.

Vậy phương trình tổng quát của ∆ là –2x – y + 5 = 0.

b) ∆ có vectơ chỉ phương u=3;4 nên ∆ nhận n=4;3 làm vectơ pháp tuyến.

Đường thẳng ∆ đi qua điểm K(5; –8) và có vectơ pháp tuyến n=4;3 nên ta có phương trình tổng quát của ∆ là: 4(x – 5) + 3(y + 8) = 0

 4x + 3y + 4 = 0.

Vậy phương trình tổng quát của ∆ là 4x + 3y + 4 = 0.

c) Với M(6; 3), N(9; 1) ta có: MN=3;2.

∆ có vectơ chỉ phương MN=3;2 nên ∆ nhận n=2;3 làm vectơ pháp tuyến.

Đường thẳng ∆ đi qua điểm M(6; 3) và có vectơ pháp tuyến n=2;3 nên phương trình tổng quát của ∆ là: 2(x – 6) + 3(y – 3) = 0

 2x + 3y – 21 = 0.

Vậy phương trình tổng quát của ∆ là 2x + 3y – 21 = 0.

Nhận xét:

• Phương trình đường thẳng ∆ đi qua hai điểm A(xA; yA), B(xB; yB) có dạng:

xxAxBxA=yyAyByA (với xB ≠ xA, yB ≠ yA).

• Nếu đường thẳng ∆ cắt trục Ox và Oy tại A(a; 0) và B(0; b) (a, b khác 0) thì phương trình ∆ có dạng:

xa+yb=1    (1).

Phương trình (1) còn được gọi là phương trình đoạn chắn.

Ví dụ:

+) Đường thẳng ∆ đi qua hai điểm P(2; 5), Q(1; 8).

Suy ra phương trình đường thẳng ∆: x212=y585x21=y53.

Vậy phương trình đường thẳng ∆ là x21=y53.

+) Đường thẳng ∆ đi qua hai điểm X(–4; 0) và Y(0; 5).

Vậy phương trình đoạn chắn của ∆: x4+y5=1.

1.4. Liên hệ giữa đồ thị hàm số bậc nhất và đường thẳng

Ta đã biết đồ thị của hàm số bậc nhất y = kx + y0 (k ≠ 0) là một đường thẳng d đi qua điểm M(0; y0) và có hệ số góc k. Ta có thể viết: y = kx + y0  kx – y + y0 = 0.

Như vậy, đồ thị hàm bậc nhất y = kx + y0 là một đường thẳng có vectơ pháp tuyến n=k;1 và có phương trình tổng quát là kx – y + y0 = 0. Đường thẳng này không vuông góc với Ox và Oy.

Ngược lại, cho đường thẳng d có phương trình tổng quát ax + by + c = 0 với a và b đều khác 0, khi đó ta có thể viết: ax + by + c = 0 y=abxcb  y = kx + y0.

Như vậy d là đồ thị của hàm bậc nhất y = kx + y0 với hệ số góc k=ab và tung độ gốc y0=cb.

Ví dụ:

+) Cho đường thẳng d có phương trình: y = 2x + 1  2x – y + 1 = 0.

Ta suy ra vectơ pháp tuyến của đường thẳng d là n=2;1.

+) Cho đường thẳng d’ có phương trình: x + 5y – 2 = 0 y=15x+25.

Khi đó ta có d là đồ thị của hàm bậc nhất y = kx + y0, với hệ số góc k=15 và tung độ gốc y0=25.

Chú ý:

• Nếu a = 0 và b ≠ 0 thì phương trình tổng quát ax + by + c = 0 trở thành y=cb.

Khi đó d là đường thẳng vuông góc với Oy tại điểm 0;cb.

• Nếu b = 0 và a ≠ 0 thì phương trình tổng quát ax + by + c = 0 trở thành x=ca.

Khi đó d là đường thẳng vuông góc với Ox tại điểm ca;0.

Trong cả hai trường hợp trên, đường thẳng d không phải là đồ thị của hàm số bậc nhất.

2. Vị trí tương đối của hai đường thẳng

Trong mặt phẳng Oxy, cho hai đường thẳng ∆1: a1x + b1y + c1 = 0 (a12+b12>0) có vectơ pháp tuyến n1 và đường thẳng ∆2: a2x + b2y + c2 = 0 (a22+b22>0) có vectơ pháp tuyến n2.

Ta có thể dùng phương pháp tọa độ để xét vị trí tương đối của ∆1 và ∆2 như sau:

– Nếu n1 và n2 cùng phương thì ∆1 và ∆2 song song hoặc trùng nhau. Lấy một điểm P tùy ý trên ∆1.

+ Nếu P  ∆2 thì ∆1 ≡ ∆2.

+ Nếu P  ∆2 thì ∆1 // ∆2.

– Nếu n1 và n2 không cùng phương thì ∆1 và ∆2 cắt nhau tại một điểm M(x0; y0) với (x0; y0) là nghiệm của hệ phương trình: a1x+b1y+c1=0a2x+b2y+c2=0.

Chú ý:

a) Nếu n1.n2=0 thì n1n2, suy ra ∆1  ∆2.

b) Để xét hai vectơ n1a1;b1 và n2a2;b2 cùng phương hay không cùng phương, ta xét biểu thức a1b2 – a2b1:

+ Nếu a1b2 – a2b1 = 0 thì hai vectơ cùng phương.

+ Nếu a1b2 – a2b1 ≠ 0 thì hai vectơ không cùng phương.

Trong trường hợp tất cả các hệ số a1, a2, b1, b2 đều khác 0, ta có thể xét hai trường hợp:

+ Nếu a1a2=b1b2 thì hai vectơ cùng phương.

+ Nếu a1a2b1b2 thì hai vectơ không cùng phương.

Ví dụ: Xét vị trí tương đối của các cặp đường thẳng sau:

a) ∆1: 4x – 10y + 1 = 0 và ∆2: x + y + 2 = 0.

b) ∆1: 12x – 6y + 6 = 0 và ∆2: 2x – y + 5 = 0.

c) ∆1: 8x + 10y – 12 = 0 và ∆2x=6+5ty=64t

d) ∆1x=15ty=2+4t và ∆2x=6+4t'y=2+5t'

Hướng dẫn giải

a) ∆1: 4x – 10y + 1 = 0 và ∆2: x + y + 2 = 0.

1 và ∆2 có vectơ pháp tuyến lần lượt là n1=4;10 và n2=1;1.

Ta có 41101.

Suy ra n1  n2 là hai vectơ không cùng phương.

Khi đó ta có ∆1 và ∆2 cắt nhau tại một điểm M. 

Giải hệ phương trình:

4x10y+1=0x+y+2=0x=32y=12

Suy ra M32;12.

Vậy ∆1 cắt ∆2 tại điểm M32;12.

b) ∆1: 12x – 6y + 6 = 0 và ∆2: 2x – y + 5 = 0.

1 và ∆2 có vectơ pháp tuyến lần lượt là n1=12;6 và n2=2;1.

Ta có 122=61.

Suy ra n1 và n2  là hai vectơ cùng phương.

Khi đó ta có ∆1 và ∆2 song song hoặc trùng nhau.

Chọn M(0; 1)  ∆1.

Thay tọa độ điểm M vào phương trình đường thẳng ∆2, ta được: 2.0 – 1 + 5 = 4 ≠ 0.

Suy ra M(0; 1)  ∆2.

Vậy ∆1 // ∆2.

c) ∆1: 8x + 10y – 12 = 0 và ∆2x=6+5ty=64t

1 có vectơ pháp tuyến n1=8;10.

2 có vectơ chỉ phương u2=5;4.

Suy ra ∆2 có vectơ pháp tuyến n2=4;5.

Ta có 84=105.

Suy ra n1 và n2 là hai vectơ cùng phương.

Khi đó ta có ∆1 và ∆2 song song hoặc trùng nhau.

Chọn M(–6; 6)  ∆2.

Thế tọa độ điểm M vào phương trình đường thẳng ∆1, ta được: 8.(–6) + 10.6 – 12 = 0.

Suy ra M(–6; 6)  ∆1.

Vậy ∆1 ≡ ∆2.

d) ∆1x=15ty=2+4t và ∆2x=6+4t'y=2+5t'

• ∆1 có vectơ chỉ phương u1=5;4.

Suy ra ∆1 có vectơ pháp tuyến u2=4;5.

• ∆2 có vectơ chỉ phương u2=4;5.

Suy ra ∆2 có vectơ pháp tuyến n2=5;4.

1 và ∆có vectơ pháp tuyến lần lượt là n1=4;5 và n2=5;4.

Ta có n1.n2= 4.5 + 5.(–4) = 0.

Suy ra n1n2.

Do đó ∆1  ∆2.

1 đi qua điểm A(–1; 2) và có vectơ pháp tuyến n1=4;5.

Suy ra phương trình tổng quát của ∆1: 4(x + 1) + 5(y – 2) = 0  4x + 5y – 6 = 0.

Tương tự, ta tìm được phương trình tổng quát của ∆2: 5x – 4y + 38 = 0.

Gọi M(x; y) là giao điểm của ∆1 và ∆2.

Suy ra tọa độ điểm M thỏa hệ phương trình:

4x+5y6=05x4y+38=0x=16641y=18241

Khi đó ta có tọa độ là M16641;18241.

Vậy ∆1 và ∆2 vuông góc với nhau tại điểm M16641;18241.

3. Góc giữa hai đường thẳng

3.1. Khái niệm góc giữa hai đường thẳng

Hai đường thẳng ∆1 và ∆2 cắt nhau tạo thành bốn góc.

• Nếu ∆1 không vuông góc với ∆2 thì góc nhọn trong bốn góc đó được gọi là góc giữa hai đường thẳng ∆1 và ∆2.

• Nếu ∆1 vuông góc với ∆2 thì ta nói góc giữa ∆1 và ∆2 bằng 90°.

Ta quy ước: Nếu ∆1 và ∆2 song song hoặc trùng nhau thì góc giữa ∆1 và ∆2 bằng 0°.

Như vậy góc α giữa hai đường thẳng luôn thỏa mãn: 0° ≤ α ≤ 90°.

Góc giữa hai đường thẳng ∆1 và ∆2 được kí hiệu là Δ1,Δ2^ hoặc (∆1, ∆2).

Ví dụ: Cho hình chữ nhật ABCD có CBD^=30°.

Tính các góc: (BD, BC), (AB, AD), (AD, BC), (AB, BD).

Hướng dẫn giải

Ta có:

+) CBD^=30°. Suy ra (BD, BC) = 30°.

+) Vì AB  AD nên (AB, AD) = 90°.

+) Vì AD // BC nên (AD, BC) = 0°.

+) Ta có ABD^+DBC^=90° (Vì AB  BC).

ABD^=90°DBC^=90°30°=60°.

Vì ABD^=60° nên (AB, BD) = 60°.

Vậy (BD, BC) = 30°, (AB, AD) = 90°, (AD, BC) = 0°, (AB, BD) = 60°.

3.2. Công thức tính góc giữa hai đường thẳng

Đường thẳng ∆1 và ∆2 có vectơ pháp tuyến lần lượt là n1=a1;b1,n2=a2;b2.

Ta có công thức: cosΔ1,Δ2=a1a2+b1b2a12+b12.a22+b22.

Nhận xét: Nếu ∆1, ∆2 có vectơ chỉ phương u1,u2 thì cosΔ1,Δ2=cosu1,u2.

Chú ý: Ta đã biết hai đường thẳng vuông góc khi và chỉ khi chúng có hai vectơ pháp tuyến vuông góc. Do đó:

• Nếu ∆1 và ∆2 lần lượt có phương trình a1x + b1y + c1 = 0 và a2x + b2y + c2 = 0 thì ta có:

(∆1, ∆2) = 90°  a1a2 + b1b2 = 0.

• Nếu ∆1 và ∆2 lần lượt có phương trình y = k1x + m1 và y = k2x + m2 thì ta có:

(∆1, ∆2) = 90°  k1k2 = –1.

Nói cách khác, hai đường thẳng có tích các hệ số góc bằng –1 thì vuông góc với nhau.

Ví dụ: Tìm số đo của góc giữa hai đường thẳng d1 và d2 trong các trường hợp sau:

a) d1: x – 2y + 5 = 0 và d2: 3x – y = 0.

b) d1: 4x + 3y – 21 = 0 và d2x=26ty=1+8t

c) d1x=1ty=1+2t và d2x=24t'y=52t'

Hướng dẫn giải

a) d1: x – 2y + 5 = 0 và d2: 3x – y = 0

d1, d2 có vectơ pháp tuyến lần lượt là n1=1;2,n2=3;1.

Ta có cosd1,d2=1.3+2.112+22.32+12=22.

Suy ra (d1, d2) = 45°.

Vậy (d1, d2) = 45°.

b) d1: 4x + 3y – 21 = 0 và d2x=26ty=1+8t 

d1 có vectơ pháp tuyến n1=4;3.

d2 có vectơ chỉ phương u2=6;8 nên có vectơ pháp tuyến n2=8;6.

Ta có n2=2n1.

Suy ra n2 // n1.

Vậy (d1, d2) = 0°.

c) d1x=1ty=1+2t và d2x=24t'y=52t'

d1, d2 có vectơ chỉ phương lần lượt là u1=1;2,u2=4;2.

Ta có u1.u2= (–1).(–4) + 2.(–2) = 0.

Suy ra u1u2n1n2

Vậy (d1, d2) = 90°.

4. Khoảng cách từ một điểm đến một đường thẳng

Trong mặt phẳng Oxy, cho đường thẳng ∆ có phương trình ax + by + c = 0 (a2 + b2 > 0) và điểm M0(x0; y0). Khoảng cách từ điểm M0 đến đường thẳng ∆, kí hiệu là d(M0, ∆), được tính bởi công thức: dM0,Δ=ax0+by0+ca2+b2.

Ví dụ: Tính khoảng cách từ điểm đến đường thẳng được cho tương ứng như sau:

a) A(3; 4) và ∆: 4x + 3y + 1 = 0.

b) B(1; 2) và d: 3x – 4y + 1 = 0.

Hướng dẫn giải

a) Với A(3; 4) và ∆: 4x + 3y + 1 = 0 ta có:

dA,Δ=4.3+3.4+142+32=5.

Vậy khoảng cách từ điểm A đến đường thẳng ∆ bằng 5.

b) Với B(1; 2) và d: 3x – 4y + 1 = 0 ta có:

dB,d=3.14.2+132+42=45.

Vậy khoảng cách từ điểm B đến đường thẳng d bằng 45.

Đánh giá

0

0 đánh giá