Sách bài tập Toán 10 Bài 3 (Chân trời sáng tạo): Đường tròn trong mặt phẳng tọa độ

2.7 K

Với giải sách bài tập Toán 10 Bài 3: Đường tròn trong mặt phẳng tọa độ sách Chân trời sáng tạo hay, chi tiết giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 10. Mời các bạn đón xem:

Giải SBT Toán lớp 10 Bài 3: Đường tròn trong mặt phẳng tọa độ

Giải SBT Toán 10 trang 69 Tập 2

Bài 1 trang 69 SBT Toán 10 Tập 2: Phương trình nào trong các phương trình sau đây là phương trình đường tròn? Tìm toạ độ tâm và bán kính của đường tròn đó.

a) x2 + y2 + 2x + 2y – 9 = 0;

b) x2 + y2 – 6x – 2y + 1 = 0;

c) x2 + y2 + 8x + 4y + 2022 = 0;

d) 3x2 + 2y2 + 5x + 7y – 1 = 0.

Lời giải:

a) x2 + y2 + 2x + 2y – 9 = 0 (1)

Phương trình (1) có dạng x2 + y2 – 2ax – 2by + c = 0 với a = – 1; b = – 1; c = – 9

Ta có a2 + b2 – c = (–  1)2 + (–  1)2 – (–  9) = 11 > 0

Vậy (1) là phương trình đường tròn tâm I(– 1; –  1) bán kính R = 11 .

b) x2 + y2 – 6x – 2y + 1 = 0 (2)

Phương trình (2) có dạng x2 + y2 – 2ax – 2by + c = 0 với a = 3; b = 1; c = 1

Ta có a2 + b2 – c = 32 + 12 – 1 = 9 > 0

Vậy (2) là phương trình đường tròn tâm I(3; 1) bán kính R = 3

c) x2 + y2 + 8x + 4y + 2022 = 0 (3)

Phương trình (3) có dạng x2 + y2 – 2ax – 2by + c = 0 với a = – 4; b = – 2; c = 2022

Ta có a2 + b2 – c = (– 4)2 + (– 2)2 – 2022 = – 2002 < 0

Vậy (3) không là phương trình đường tròn.

d) 3x2 + 2y2 + 5x + 7y – 1 = 0 (4)

Phương trình (4) không phải là phương trình đường tròn vì không thể đưa về dạng (x – a)2 + (y – b)2 = R2 hoặc dạng x2 + y2 – 2ax – 2by + c = 0.

Giải SBT Toán 10 trang 70 Tập 2

Bài 2 trang 70 SBT Toán 10 Tập 2: Lập phương trình đường tròn (C) trong các trường hợp sau:

a) (C) có tâm O(0; 0) và có bán kính R = 9;

b) (C) có đường kính AB với A(1; l) và B(3; 5),

c) (C) có tâm M(2; 3) và tiếp xúc với đường thẳng 3x – 4y + 9 = 0,

d) (C) có tâm I(3; 2) và đi qua điểm B(7; 4).

Lời giải:

a) Đường trong (C) tâm O(0; 0) và có bán kính R = 9 có phương trình là:

x2 + y2 = 81

b) Đường tròn (C) có đường kính AB với A(1; l) và B(3; 5)

Khi đó đường tròn (C) có tâm I là trung điểm của đoạn thẳng AB và bán kính R =  AB2

Gọi toạ độ tâm I(x; y)

Ta có x=xA+xB2=1+32=2y=yA+yB2=1+52=3   suy ra I(2; 3)

Ta lại có: AB = AB  mà  AB=(2;4) suy ra  AB=22+42=25

Vậy bán kính R = 5 .

Phương trình đường tròn (C) có tâm I(2; 3) và bán kính R =  5 là:

(x – 2)2 + (y – 3)2 = 5.

c) Đường tròn (C) có tâm M(2; 3) và tiếp xúc với đường thẳng ∆: 3x – 4y + 9 = 0

Vậy đường tròn (C) có bán kính R = d(M, ∆).

Ta có d(M, ∆) =  3.24.3+932+(4)2=35 suy ra bán kính R =  35

Vậy phương trình đường tròn (C) có tâm M(2; 3) và bán kính R = 35   là:

(x – 2)2 + (y – 3)2 =  925

d) Đường tròn (C) có tâm I(3; 2) và đi qua điểm B(7; 4).

Suy ra đường tròn (C) có bán kính R = IB.

Ta có IB = IB mà IB=(4;2)  suy ra IB=42+22=25

Phương trình đường tròn (C) có tâm I(3; 2) và bán kính R = 25 là:

(x – 3)2 + (y – 2)2 = 20.

Bài 3 trang 70 SBT Toán 10 Tập 2: Lập phương trình đường tròn ngoại tiếp tam giác có toạ độ các đỉnh là:

a) A(1; 4), B(0; 1), C(4; 3);

b) O(0; 0), P(16; 0), R(0; 12).

Lời giải:

a) Phương trình đường tròn ngoại tiếp tam giác ABC với A(1; 4), B(0; 1), C(4; 3)

Gọi I(x; y) là tâm đường tròn ngoại tiếp tam giác ABC

AI=(x1;y4);BI=(x;y1);CI=(x4;y3)

Suy ra  AI2=BI2AI2=CI2 

 x22x+1+y28y+16=x2+y22y+1x22x+1+y28y+16=x28x+16+y26y+9

 2x6y=166x2y=8x=2y=2

Suy ra I(2; 2)

Bán kính R = IB ta có IB = IB mà IB=(2;1)  suy ra IB=(2)2+(1)2=5

Vậy phương trình đường tròn (C) có tâm I(2; 2) và bán kính R = 5  là:

(x – 2)2 + (y – 2)2 = 5.

b) Phương trình đường tròn ngoại tiếp tam giác OPR với O(0; 0), P(16; 0), R(0; 12).

Ta có: OP16;0;  OR0;12   OP  .  OR  = 16.0 + 0.12 = 0.

⇒ OP ⊥ OR

Do đó tam giác OPR vuông tại O nên tâm đường tròn ngoại tiếp tam giác OPR là trung điểm của PR và bán kính R = OI.

Gọi I(x; y) là tâm đường tròn ngoại tiếp tam giác OPR

Suy ra x=xP+xR2=16+02=8y=yP+yR2=0+122=6  . Do đó tâm I(8; 6)

Bán kính R = OI mà OI=(8;6)  suy ra OI=82+62=10

Vậy phương trình đường tròn ngoại tiếp tam giác OPR có tâm I(8; 6) bán kính R = 10 là: (x – 8)2 + (y – 6)2 = 100.

Bài 4 trang 70 SBT Toán 10 Tập 2: Lập phương trình đường tròn tiếp xúc với hai trục toạ độ Ox, Oy và đi qua điểm A(2; 1).

Lời giải:

Phương trình đường tròn (C) tiếp xúc với hai trục toạ độ Ox, Oy và đi qua điểm A(2; 1)

Giả sử đường tròn (C) có tâm I(a ; b) và bán kính là R

(C) tiếp xúc với trục Ox suy ra R = d(I, Ox) =  b

(C) tiếp xúc với trục Oy suy ra R = d(I, Oy) =  a

Suy ra a  b

Vậy a = b hoặc a = - b

Trường hợp 1. a = b thì I(a; a) bán kính R = |a|

Ta có A  (C)   IA = R  IA2 = R2

 (2 – a)2 + (1 – a)2 = a2

 4 – 4a + a2 + 1 – 2a + a2 = a2

 a2 – 6a + 5 = 0

 a = 1 hoặc a = 5

Với a = 1 thì đường tròn (C) có tâm I(1; 1) bán kính R = 1 có phương trình là:

(x – 1)2 + (y – 1)2 = 1

Với a = 5 thì đường tròn (C) có tâm I(5; 5) bán kính R = 5 có phương trình là:

(x – 5)2 + (y – 5)2 = 25

Trường hợp 2. a = – b thì I(a; – a) bán kính R =  a

Ta có A  (C)   IA = R   IA2 = R2

 (2 – a)2 + (1 + a)2 = a2

 4 – 4a + a2 + 1 + 2a + a2 = a2

 a2 – 2a + 5 = 0 (phương trình vô nghiệm)

Vậy có 2 đường tròn thoả mãn bài toán là (x – 1)2 + (y – 1)2 = 1 hoặc (x – 5)2 + (y – 5)2 = 25.

Bài 5 trang 70 SBT Toán 10 Tập 2:  Cho đường tròn (C) có phương trình x2 + y2 – 6x – 2y – 15 = 0.

a) Chứng tỏ rằng điểm A(0; 5) thuộc đường tròn (C);

b) Viết phương trình tiếp tuyến với (C) tại điểm A(0; 5);

c) Viết phương trình tiếp tuyến với (C) song song với đường thẳng 8x + 6y + 99 = 0.

Lời giải:

a) Thay toạ độ điểm A(0; 5) vào phương trình đường tròn ta được

02 + 52 – 6.0 – 2.5 – 15 = 0 (thoả mãn phương trình đường tròn)

Vậy điểm A(0; 5) thuộc đường tròn (C).

b) Ta có điểm A thuộc đường tròn (C)

Xét đường tròn (C): x2 + y2 – 6x – 2y – 15 = 0 ⇔ (x – 3)2 + (y – 1)2 = 52

Suy ra đường tròn (C) có tâm I(3; 1) và R = 5

Phương trình tiếp tuyến của đường tròn (C) tại điểm A(0; 5) là:

(3 – 0)(x – 0) + (1 – 5)(y – 5) = 0

 3x – 4y + 20 = 0

c) Vì phương trình tiếp tuyến của (C) song song với đường thẳng 8x + 6y + 99 = 0 nên có dạng ∆: 8x + 6y + c = 0.

Lại có ∆ là tiếp tuyến của (C) nên d(I, ∆) = R

Ta có  d(I,Δ)=8.3+6.1+c82+62=5  |30 + c| = 50

Suy ra 30 + c = 50 hoặc 30 + c = – 50

Với 30 + c = 50   c = 20

Phương trình ∆: 8x + 6y + 20 = 0  4x + 3y + 10 = 0.

Với 30 + c = – 50   c = – 80

Phương trình ∆: 8x + 6y – 80  = 0  4x + 3y – 40 = 0.

Vậy có hai phương trình tiếp tuyến thoả mãn bài toán là: 4x + 3y + 10 = 0 hoặc 4x + 3y – 40  = 0

Bài 6 trang 70 SBT Toán 10 Tập 2: Một cái cổng hình bán nguyệt rộng 6,8 m, cao 3,4m. Mặt đường dưới cổng được chia thành hai làn cho xe ra vào.

a) Viết phương trình mô phỏng cái cổng.

b) Một chiếc xe tải rộng 2,4 m và cao 2,5 m đi đúng làn đường quy định có thể đi qua cổng được hay không?

Lời giải:

Sách bài tập Toán 10 Bài 3: Đường tròn trong mặt phẳng tọa độ - Chân trời sáng tạo (ảnh 1)

a) Giả sử cái cổng hình bán nguyệt có dạng như hình vẽ

Cái cổng là nửa hình tròn có bán kính R = 3,4 m

Phương trình mô phỏng cái cổng là phương trình đường tròn tâm O(0; 0) bán kính R = 3,4 m có dạng: x2 + y2 = 11,56.

b) Chiếc xe tải rộng 2,4 m; cao 2,5 m ta có toạ độ điểm xa nhất của xe tải so với tâm của cổng là điểm M(2,4; 2,5)

Ta có độ dài đoạn OM = OM  mà OM  (2,4; 2,5)

Vậy OM=2,42+2,523.5  suy ra độ dài đoạn thẳng OM = 3,5 m > R

Vì điểm xa nhất của xe tải lớn hơn bán kính đường tròn khi đi đúng làn đường xe tải không qua được cổng.

Xem thêm các bài giải SBT Toán 10 Chân trời sáng tạo hay, chi tiết khác:

Bài 2: Đường thẳng trong mặt phẳng tọa độ

Bài 4: Ba đường conic trong mặt phẳng tọa độ

Bài tập cuối chương 9

Bài 1: Không gian mẫu và biến cố

Lý thuyết Đường tròn trong mặt phẳng tọa độ

1. Phương trình đường tròn

Trong mặt phẳng Oxy, cho đường tròn (C) tâm I(a; b), bán kính R.

Phương trình (x – a)2 + (y – b)2 = R2 được gọi là phương trình đường tròn tâm I(a; b), bán kính R.

Ví dụ: Viết phương trình đường tròn (C) trong các trường hợp sau:

a) (C) có tâm I(2; –3), bán kính R = 2.

b) (C) có đường kính AB với A(1; 6), B(–3; 2).

c) (C) đi qua ba điểm A(–2; 4), B(5; 5), C(6; –2).

Hướng dẫn giải

a) Đường tròn (C) có tâm I(2; –3), bán kính R = 2.

Vậy phương trình đường tròn (C): (x – 2)2 +(y + 3)2 = 4.

b) Gọi I(a; b) là tâm của đường tròn (C).

Vì đường tròn (C) có tâm I(a; b) và đường kính AB nên I là trung điểm AB.

Với A(1; 6), B(–3; 2).

Suy ra a=xA+xB2=132=1b=yA+yB2=6+22=4

Khi đó ta có tọa độ I(–1; 4).

Ta có IA=2;2.

Suy ra R=IA=IA=22+22=22.

Đường tròn (C) có tâm I(–1; 4), bán kính R=22.

Vậy phương trình đường tròn (C): (x + 1)2 + (y – 4)2 = 8.

c) Gọi M, N lần lượt là trung điểm của AB, AC.

Ta có M là trung điểm AB với A(–2; 4), B(5; 5).

Suy ra xM=xA+xB2=2+52=32yM=yA+yB2=4+52=92

Khi đó ta có M32;92.

Tương tự, ta có N(2; 1).

Với A(–2; 4), B(5; 5), C(6; –2) ta có AB=7;1,  AC=8;6.

Đường trung trực d1 của đoạn thẳng AB đi qua điểm M32;92, có vectơ pháp tuyến AB=7;1.

Suy ra phương trình d17x32+1y92=07x+y15=0.

Tương tự, ta có phương trình đường trung trực d2 của đoạn thẳng AC:

8(x – 2) – 6(y – 1) = 0  4x – 3y – 5 = 0.

Vì đường tròn (C) có tâm I(a; b) và (C) đi qua ba điểm A, B, C nên IA = IB = IC (= R).

Vì IA = IB nên I nằm trên đường trung trực d1 của đoạn thẳng AB.

Tương tự, ta có I nằm trên đường trung trực d2 của đoạn thẳng AC.

Vì vậy ta suy ra I là giao điểm của d1 và d2.

Khi đó tọa độ điểm I là nghiệm của hệ phương trình:

7x+y15=04x3y5=0x=2y=1

Suy ra I(2; 1).

Với I(2; 1) và A(–2; 4) ta có IA=4;3.

Suy ra R=IA=IA=42+32=5.

Vậy phương trình đường tròn (C): (x – 2)2 + (y – 1)2 = 25.

Ví dụ: Tìm tâm và bán kính của đường tròn (C) có phương trình trong mỗi trường hợp sau:

a) (x – 4)2 + (y – 10)2 = 9.

b) (x + 2)2 + (y – 5)2 = 64.

c) x2 + (y – 1)2 = 36.

Hướng dẫn giải

a) (x – 4)2 + (y – 10)2 = 9

Đường tròn (C) có tâm I(4; 10), bán kính R=9=3.

b) (x + 2)2 + (y – 5)2 = 64

Đường tròn (C) có tâm I(–2; 5), bán kính R=64=8.

c) x2 + (y – 1)2 = 36.

Đường tròn (C) có tâm I(0; 1), bán kính R=36=6.

Nhận xét: Ta có (x – a)2 + (y – b)2 = R2

 x2 + y2 – 2ax – 2by + (a2 + b2 – R2) = 0.

Vậy phương trình đường tròn (x – a)2 + (y – b)2 = R2 có thể được viết dưới dạng x2 + y2 – 2ax – 2by + c = 0, trong đó c = a2 + b2 – R2.

Ngược lại, phương trình x2 + y2 – 2ax – 2by + c = 0 là phương trình của đường tròn (C) khi và chỉ khi a2 + b2 – c > 0. Khi đó đường tròn (C) có tâm I(a; b) và bán kính R=a2+b2c.

Ví dụ: Phương trình nào trong các phương trình sau đây là phương trình đường tròn? Nếu là phương trình đường tròn, hãy tìm tọa độ tâm và bán kính của đường tròn đó.

a) x2 + y2 + 2x – 6y – 15 = 0.

b) 2x2 + 2y2 + 4x + 8y + 14 = 0.

Hướng dẫn giải

a) Phương trình đã cho có dạng: x2 + y2 – 2ax – 2by + c = 0, với a = –1, b = 3, c = –15.

Ta có a2 + b2 – c = 1 + 9 + 15 = 25 > 0.

Vậy phương trình đã cho là phương trình đường tròn có tâm I(–1; 3), bán kính R = 5.

b) Ta có 2x2 + 2y2 + 4x + 8y + 14 = 0  x2 + y2 + 2x + 4y + 7 = 0.

Phương trình trên có dạng x2 + y2 – 2ax – 2by + c = 0, với a = –1, b = –2, c = 7.

Ta có a2 + b2 – c = 1 + 4 – 7 = –2 < 0.

Vậy phương trình đã cho không phải là phương trình đường tròn.

2. Phương trình tiếp tuyến của đường tròn

Phương trình tiếp tuyến của đường tròn tâm I(a; b) tại điểm M0(x0; y0) nằm trên đường tròn là:

(a – x0)(x – x0) + (b – y0)(y – y0) = 0.

Ví dụ: Viết phương trình tiếp tuyến d của đường tròn (C): (x – 2)2 + (y + 3)2 = 5 tại điểm M(3; –1).

Hướng dẫn giải

Ta có (3 – 2)2 + (–1 + 3)2 = 5.

Suy ra M  (C).

Đường tròn (C) có tâm I(2; –3).

Phương trình tiếp tuyến d của đường tròn (C) tại điểm M(3; –1) là:

(2 – 3)(x – 3) + [–3 – (–1)].[y – (–1)] = 0.

 –1.(x – 3) + (–2).(y + 1) = 0.

 –x – 2y + 1 = 0.

Vậy phương trình tiếp tuyến d của đường tròn (C) cần tìm là –x – 2y + 1 = 0.

Đánh giá

0

0 đánh giá