Với giải sách bài tập Toán 10 Bài 4: Ba đường conic trong mặt phẳng tọa độ sách Chân trời sáng tạo hay, chi tiết giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 10. Mời các bạn đón xem:
Giải SBT Toán lớp 10 Bài 4: Ba đường conic trong mặt phẳng tọa độ
Giải SBT Toán 10 trang 75 Tập 2
Bài 1 trang 75 SBT Toán 10 Tập 2: Viết phương trình chính tắc của:
a) Elip có trục lớn bằng 12 và trục nhỏ bằng 8;
b) Hypebol có tiêu cự 2c = 18 và độ dài trục thực 2a = 14;
c) Parabol có tiêu điểm F(5; 0).
Lời giải:
a) Ta có:
Trục lớn 2a = 12 ⇒ a = 6;
Trục bé 2b = 8 ⇒ b = 4.
Vậy phương trình chính tắc của Elip là:
b) Ta có:
Tiêu cự 2c = 18 ⇒ c = 9
Trục thực 2a = 14 ⇒ a = 7
Mặt khác, ta có: b2 = c2 – a2 = 92 – 72 = 32.
Vậy phương trình chính tắc của Hypebol là: .
c) Parabol có tiêu điểm F(5; 0) nên ta có suy ra p = 10.
Vậy Parabol có phương trình y2 = 20x.
a) ;
Lời giải:
a)
Đây là phương trình chính tắc của Elip
Ta có và c =
Các tiêu điểm
b) (C2): 25x2 – 9y2 = 225
Đây là phương trình chính tắc của Hypebol
Ta có a = 3; b = 5 và c2 = a2 + b2 = 32 + 52 = 34.
Các tiêu điểm .
c) (C3): x = 2y2
y2 = x
Đây là phương trình chính tắc của Parabol
Ta có 2p = suy ra p =
Tiêu điểm .
Chuẩn bị:
- Hai cái đinh, một vòng dây kín không đàn hồi, bút chì.
Thực hiện:
- Xác định vị trí (hai tiêu điểm của elip) và ghim hai cái đinh lên hai điểm đó trên tâm ván.
- Quàng vòng dây qua hai chiếc đinh và kéo căng tại một điểm M nào đó. Tựa đầu bút chì vào trong vòng dây tại điểm M rồi di chuyển sao cho dây luôn luôn căng. Đầu bút chỉ vạch lên tấm bìa một đường mà ta gọi là đường elip. (Xem minh hoạ trong Hình 10).
Phải ghim hai cái đinh cách các mép tấm ván ép bao nhiêu và lấy vòng dây có độ dài là bao nhiêu?
Lời giải:
Ta có:
Trục lớn 2a = 1 ⇒ a = 0,5
Trục bé 2b = 0,6 ⇒ b = 0,3
Khi đó: c2 = a2 – b2 = 0,52 – 0,32 = 0,16
c = 0,4 m = 40 cm
Các tiêu điểm F1(- 40, 0), F2(40; 0)
Độ dài vòng dây là: MF1 + MF2 + F1F2 = 2a + 2c = 2.0,5 + 2. 0,4 = 1,8 m.
Vậy hai cái đinh để cách mép phải và mép trái của tấm ván ép 10 cm. Lấy vòng dây có độ dài 1,8 m = 180 cm.
Giải SBT Toán 10 trang 76 Tập 2
a) Hãy chọn hệ toạ độ thích hợp và viết phương trình chính tắc của elip nói trên.
b) Tính khoảng cách thẳng đứng từ một điểm cách chân khung 20 cm lên đến khung thép.
Lời giải:
a) Ta có a = 120; b = 100
Vậy phương trình chính tắc của Elip là:
b)
Giả sử thang có hình Elip như hình vẽ
Gọi F là điểm cách chân khung 20 cm.
⇒ OF = 120 – 20 = 100 cm
Suy ra độ dài đoạn FE là khoảng cách cần tìm
Vậy toạ độ của E(100; y); (y > 0)
Vì E thuộc Elip nên ta có y2 =
Vậy
Ta có khoảng cách thẳng đứng từ điểm cách chân khung 20 cm đến khung thép là 55 cm.
Lời giải:
Gọi bán kính nóc tháp là r, đáy tháp là R
Vì khoảng cách từ nóc tháp đến tâm đối xứng của hypebol bằng khoảng cách từ tâm đối xứng đến đáy nên ta có khoảng cách từ nóc tháp đến tâm đối là 40 m, khoảng cách từ tâm đối xứng đến đáy là 80 m.
Do điểm M(r, 40) và điểm N(R; - 80) thuộc hypebol nên ta có
38 m
m
Vậy bán kính nóc tháp là 38 m; bán kính đáy tháp là 57 m.
Lời giải:
Ta chọn hệ quy chiếu như hình vẽ
Parabol có phương trình y2 = 2px (p > 0)
Thay toạ độ điểm M(40; 60) vào phương trình ta được
602 = 2.p.40 p = 45
Vậy phương trình chính tắc của Parabol là: y2 = 90x
Vì thanh cách điểm giữa cầu là 20 m nên ta có điểm N(x; 20) thuộc Parabol nên ta có: 202 = 90.x
Vậy thanh có độ dài 8 + 4,4 = 12,4 m.
Xem thêm các bài giải SBT Toán 10 Chân trời sáng tạo hay, chi tiết khác:
Bài 3: Đường tròn trong mặt phẳng tọa độ
Bài 1: Không gian mẫu và biến cố
Lý thuyết Ba đường conic trong mặt phẳng tọa độ
1. Elip
1.1. Nhận biết elip
Cho hai điểm cố định F1, F2 và một độ dài không đổi 2a lớn hơn F1F2. Elip (E) là tập hợp các điểm M trong mặt phẳng sao cho F1M + F2M = 2a.
Các điểm F1 và F2 gọi là các tiêu điểm của elip.
Độ dài F1F2 = 2c gọi là tiêu cự của elip (a > c).
1.2. Phương trình chính tắc của elip
Cho elip (E) có các tiêu điểm F1 và F2 và đặt F1F2 = 2c. Chọn hệ trục tọa độ Oxy sao cho F1(–c; 0) và F2(c; 0).
Người ta chứng minh được:
(1),
trong đó .
Phương trình (1) gọi là phương trình chính tắc của elip.
Chú ý:
• (E) cắt Ox tại hai điểm A1(–a; 0), A2(a; 0) và cắt Oy tại hai điểm B1(0; –b), B2(0; b).
• Các điểm A1, A2, B1, B2 gọi là các đỉnh của elip.
• Đoạn thẳng A1A2 = 2a gọi là trục lớn, đoạn thẳng B1B2 = 2b gọi là trục nhỏ của elip.
• Giao điểm O của hai trục gọi là tâm đối xứng của elip.
• Nếu M(x; y) ∈ (E) thì |x| ≤ a, |y| ≥ b.
Ví dụ: Cho elip (E) có độ dài trục lớn bằng 10, tỉ số giữa tiêu cự và độ dài trục lớn là .
a) Tính độ dài trục nhỏ của elip.
b) Viết phương trình chính tắc của elip.
Hướng dẫn giải
a) Ta có độ dài trục lớn bằng 10. Ta suy ra 2a = 10.
Suy ra a = 5.
Theo đề, ta có tỉ số giữa tiêu cự và độ dài trục lớn là .
Suy ra .
.
Ta có .
Suy ra 2b = 2.3 = 6.
Vậy độ dài trục nhỏ của elip (E) bằng 6.
b) Ta có a = 5 và b = 3.
Phương trình chính tắc của elip (E) là: .
2. Hypebol
2.1. Nhận biết hypebol
Cho hai điểm cố định F1, F2 và một độ dài không đổi 2a nhỏ hơn F1F2. Hypebol (H) là tập hợp các điểm M trong mặt phẳng sao cho |F1M – F2M| = 2a.
Các điểm F1 và F2 gọi là các tiêu điểm của hypebol.
Độ dài F1F2 = 2c gọi là tiêu cự của hypebol (c > a).
2.2. Phương trình chính tắc của hypebol
Cho hypebol (H) có các tiêu điểm F1 và F2 và đặt F1F2 = 2c. Điểm M thuộc hypebol (H) khi và chỉ khi |F1M – F2M| = 2a. Chọn hệ trục tọa độ Oxy sao cho F1(–c; 0) và F2(c; 0).
Người ta chứng minh được:
(2),
trong đó .
Phương trình (2) gọi là phương trình chính tắc của hypebol.
Chú ý:
• (H) cắt Ox tại hai điểm A1(–a; 0) và A2(a; 0). Nếu ta vẽ hai điểm B1(0; –b) và B2(0; b) vào hình chữ nhật OA2PB2 thì .
• Các điểm A1, A2 gọi là các đỉnh của hypebol.
• Đoạn thẳng A1A2 = 2a gọi là trục thực, đoạn thẳng B1B2 = 2b gọi là trục ảo của hypebol.
• Giao điểm O của hai trục là tâm đối xứng của hypebol.
• Nếu M(x; y) ∈ (H) thì x ≤ –a hoặc x ≥ a.
Ví dụ: Cho hypebol (H) có một tiêu điểm F2(8; 0) và (H) đi qua điểm A(5; 0). Viết phương trình chính tắc của hypebol (H).
Hướng dẫn giải
Phương trình chính tắc của (H) có dạng , trong đó a, b > 0.
Vì A(5; 0) ∈ (H) nên ta có . Suy ra a = 5.
Do (H) có một tiêu điểm F2(8; 0) nên ta có c = 8.
Suy ra .
Vậy phương trình chính tắc của (H) là .
3. Parabol
3.1. Nhận biết parabol
Cho một điểm F và một đường thẳng ∆ cố định không đi qua F. Parabol (P) là tập hợp các điểm M cách đều F và ∆.
F gọi là tiêu điểm và ∆ gọi là đường chuẩn của parabol (P).
3.2. Phương trình chính tắc của parabol
Cho parabol (P) có tiêu điểm F và đường chuẩn ∆. Gọi khoảng cách từ tiêu điểm đến đường chuẩn là p, hiển nhiên p > 0.
Chọn hệ trục tọa độ Oxy sao cho và ∆: .
Người ta chứng minh được:
M(x; y) ∈ (P) ⇔ y2 = 2px (3).
Phương trình (3) gọi là phương trình chính tắc của parabol.
Chú ý:
• O gọi là đỉnh của parabol (P).
• Ox gọi là trục đối xứng của parabol (P).
• p gọi là tham số tiêu của parabol (P).
• Nếu M(x; y) ∈ (P) thì x ≥ 0 và M’(x; –y) ∈ (P).
Ví dụ: Viết phương trình chính tắc của parabol (P), biết (P) có đường chuẩn ∆: x + 4 = 0.
Hướng dẫn giải
(P) có đường chuẩn ∆: x + 4 = 0.
Ta suy ra .
Khi đó p = 2.4 = 8.
Vậy phương trình chính tắc của parabol (P) là: y2 = 16x.