Cho tam giác ABC. Xác định điểm M thoả mãn vecto AF - vecto BD + vecto CE = vecto MA

876

Với giải ý b Bài 4.10 trang 51 SBT Toán lớp 10 Kết nối tri thức chi tiết trong Bài 8: Tổng và hiệu của hai vectơ giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 10. Mời các bạn đón xem:

Giải sách bài tập Toán lớp 10 Bài 8: Tổng và hiệu của hai vectơ

Bài 4.10 trang 51 SBT Toán 10 Tập 1: Cho tam giác ABC. Gọi D, E, F theo thứ tự là trung điểm của các cạnh BC, CA. AB.

b) Xác định điểm M thoả mãn AFBD+CE=MA. 

c) Chứng minh rằng MC=AB. 

Lời giải:

Sách bài tập Toán 10 Bài 8: Tổng và hiệu của hai vectơ - Kết nối tri thức (ảnh 1)

b) Điểm M thoả mãn AFBD+CE=MA.

Mà AFBD+CE=CB (câu a)

Nên MA=CB 

Do đó MABC là hình bình hành (theo kết quả bài tập 4.3 SGK Toán 10 SBT Toán 10 Tập 1)

Vậy điểm M thoả mãn tứ giác MABC là hình bình hành.

c) Vì MABC là hình bình hành (câu b)

Nên MC=AB (theo kết quả bài tập 4.3 SGK Toán 10 SBT Toán 10 Tập 1)

Vậy MC=AB.

Xem thêm các bài giải sách bài tập Toán lớp 10 Kết nối tri thức hay, chi tiết khác:

Bài 4.7 trang 50 SBT Toán 10 Tập 1: Cho hai vectơ a và b không cùng phương. Chứng minh rằng:...

Bài 4.8 trang 50 SBT Toán 10 Tập 1: Cho hình bình hành ABCD tâm O. M là một điểm tuỳ ý thuộc cạnh BC, khác B và C. MO cắt cạnh AD tại N...

Bài 4.9 trang 50 SBT Toán 10 Tập 1: Cho tứ giác ABCD...

Bài 4.10 trang 51 SBT Toán 10 Tập 1: Cho tam giác ABC. Gọi D, E, F theo thứ tự là trung điểm của các cạnh BC, CA. AB...

Bài 4.11 trang 51 SBT Toán 10 Tập 1: Trên Hình 4.7 biểu diễn ba lực F1,F2,F3 cùng tác động vào một vật ở vị trí cân bằng A...

Bài 4.12 trang 51 SBT Toán 10 Tập 1: Trên mặt phẳng, chất điểm A chịu tác dụng của ba lực F1,F2,F3 và ở trạng thái cân bằng. Góc giữa hai vectơ F1,F2 bằng 60°. Tính độ lớn của F3, biết F1=F2=23N....

Xem thêm các bài giải SBT Toán 10 Kết nối tri thức hay, chi tiết khác:

Bài 7: Các khái niệm mở đầu

Bài 8: Tổng và hiệu của hai vectơ

Bài 9: Tích của một vectơ với một số

Bài 10: Vectơ trong mặt phẳng tọa độ

Bài 11: Tích vô hướng của hai vectơ

Đánh giá

0

0 đánh giá