Có hai đội thi đấu môn Bắn súng. Đội I có 5 vận động viên, đội II có 7 vận động viên

130

Với giải Bài 6.10 trang 78 Toán 12 Tập 2 Kết nối tri thức chi tiết trong Bài 19: Công thức xác suất toàn phần và công thức Bayes giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 12. Mời các bạn đón xem:

Giải bài tập Toán 12 Bài 19: Công thức xác suất toàn phần và công thức Bayes

Bài 6.10 trang 78 Toán 12 Tập 2: Có hai đội thi đấu môn Bắn súng. Đội I có 5 vận động viên, đội II có 7 vận động viên. Xác suất đạt huy chương vàng của mỗi vận động viên đội I và đội II tương ứng là 0,65 và 0,55. Chọn ngẫu nhiên một vận động viên.

a) Tính xác suất để vận động viên này đạt huy chương vàng;

b) Giả sử vận động viên được chọn đạt huy chương vàng. Tính xác suất để vận động viên này thuộc đội I.

Lời giải:

a) Gọi A là biến cố: “VĐV được chọn thuộc đội I”;

B là biến cố: “VĐV được chọn thuộc đội II”;

E là biến cố: “VĐV được chọn đạt HCV”.

(Với VĐV: vận động viên, HCV: huy chương vàng).

Ta có B = A¯.

Ta cần tính P(E). Theo công thức xác suất toàn phần, ta có

P(E) = P(A) ∙ P(E | A) + PA¯.PE|A¯.

Theo bài ra ta có: PA=512PA¯=PB=712.

P(E | A) là xác suất để VĐV thuộc đội I đoạt HCV. Theo bài ra ta có P(E | A) = 0,65.

PE|A¯ là xác suất để VĐV thuộc đội II đoạt HCV. Theo bài ra ta có PE|A¯ = 0,55.

Thay vào ta được P(E) = 5120,65+7120,550,5917.

Vậy xác suất để vận động viên này đạt huy chương vàng là khoảng 0,5917.

b) Ta có xác suất để vận động viên được chọn thuộc đội I, biết rằng vận động viên này đạt huy chương vàng, chính là xác suất P(A | E).

Theo công thức Bayes và kết quả ở câu a) ta có

PA|E=PAPE|APE5120,650,59170,4577

Đánh giá

0

0 đánh giá