Có hai chuồng thỏ. Chuồng I có 5 con thỏ đen và 10 con thỏ trắng

403

Với giải Bài 6.8 trang 78 Toán 12 Tập 2 Kết nối tri thức chi tiết trong Bài 19: Công thức xác suất toàn phần và công thức Bayes giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 12. Mời các bạn đón xem:

Giải bài tập Toán 12 Bài 19: Công thức xác suất toàn phần và công thức Bayes

Bài 6.8 trang 78 Toán 12 Tập 2: Có hai chuồng thỏ. Chuồng I có 5 con thỏ đen và 10 con thỏ trắng. Chuồng II có 7 con thỏ đen và 3 con thỏ trắng. Trước tiên, từ chuồng II lấy ra ngẫu nhiên 1 con thỏ rồi cho vào chuồng I. Sau đó, từ chuồng I lấy ra ngẫu nhiên 1 con thỏ. Tính xác suất để con thỏ được lấy ra là con thỏ trắng.

Lời giải:

Gọi A là biến cố: “Bắt được thỏ trắng từ chuồng II”;

B là biến cố: “Sau đó bắt được thỏ trắng từ chuồng I”.

Ta cần tính P(B). Theo công thức xác suất toàn phần, ta có:

P(B) = P(A) ∙ P(B | A) + PA¯PB|A¯

Vì chuồng II có 7 con thỏ đen và 3 con thỏ trắng nên ta có: PA=310.

Suy ra PA¯=1PA=1310=710.

Nếu A xảy ra tức là bắt được thỏ trắng từ chuồng II rồi cho vào chuồng I thì chuồng I có 5 thỏ đen và 11 thỏ trắng. Do đó, PB|A=1116.

Nếu A không xảy ra thì chuồng I có 6 thỏ đen và 10 thỏ trắng. Do đó, PB|A¯=1016.

Khi đó, P(B) = P(A) ∙ P(B | A) + PA¯ . PB|A¯=3101116+7101016=103160.

Vậy xác suất để con thỏ được lấy ra là con thỏ trắng là

Đánh giá

0

0 đánh giá