Trở lại tình huống mở đầu Mục 2. Thống kê cho thấy tỉ lệ dân số mắc bệnh hiểm nghèo X là 0,2%

163

Với giải Luyện tập 5 trang 77 Toán 12 Tập 2 Kết nối tri thức chi tiết trong Bài 19: Công thức xác suất toàn phần và công thức Bayes giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 12. Mời các bạn đón xem:

Giải bài tập Toán 12 Bài 19: Công thức xác suất toàn phần và công thức Bayes

Luyện tập 5 trang 77 Toán 12 Tập 2: Trở lại tình huống mở đầu Mục 2. Thống kê cho thấy tỉ lệ dân số mắc bệnh hiểm nghèo X là 0,2%.

a) Trước khi tiến hành xét nghiệm, xác suất mắc bệnh hiểm nghèo X của ông M là bao nhiêu?

b) Sau khi xét nghiệm cho kết quả dương tính, xác suất mắc bệnh hiểm nghèo X của ông M là bao nhiêu?

Lời giải:

a) Vì thống kê cho thấy tỉ lệ dân số mắc bệnh hiểm nghèo X là 0,2% nên trước khi tiến hành xét nghiệm, xác suất mắc bệnh hiểm nghèo X của ông M là p = 0,2% = 0,002.

b) Gọi A là biến cố: “Ông M mắc bệnh hiểm nghèo X”; B là biến cố: “Xét nghiệm cho kết quả dương tính”.

Khi đó xác suất mắc bệnh hiểm nghèo X của ông M sau khi xét nghiệm cho kết quả dương tính chính là xác suất P(A | B).

Áp dụng công thức ta có

P(A | B) = PAPB|APAPB|A+PA¯PB|A¯.

Theo câu a) ta có: P(A) = p = 0,002. Suy ra P(A¯) = 1 – P(A) = 1 – 0,002 = 0,998.

P(B | A) là xác suất xét nghiệm cho kết quả dương tính nếu ông M mắc bệnh hiểm nghèo X. Theo bài ra ta có P(B | A) = 0,95.

P(B | A¯) là xác suất xét nghiệm cho kết quả dương tính nếu ông M không mắc bệnh hiểm nghèo X. Theo bài ra ta có P(B | A¯) = 0,01.

Khi đó, thay vào công thức Bayes ta được

PA | B=0,0020,950,0020,95+0,9980,010,16.

Vậy sau khi xét nghiệm cho kết quả dương tính, xác suất mắc bệnh hiểm nghèo X của ông M là khoảng 0,16.

Đánh giá

0

0 đánh giá