Trong Y học, để chẩn đoán bệnh X nào đó, người ta thường dùng một xét nghiệm

157

Với giải HĐ2 trang 75 Toán 12 Tập 2 Kết nối tri thức chi tiết trong Bài 19: Công thức xác suất toàn phần và công thức Bayes giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 12. Mời các bạn đón xem:

Giải bài tập Toán 12 Bài 19: Công thức xác suất toàn phần và công thức Bayes

HĐ2 trang 75 Toán 12 Tập 2: Phân biệt P(A | B) và P(B | A). Tình huống mở đầu

Trong Y học, để chẩn đoán bệnh X nào đó, người ta thường dùng một xét nghiệm. Xét nghiệm dương tính, tức là xét nghiệm đó kết luận một người mắc bệnh X. Xét nghiệm âm tính, tức là xét nghiệm đó kết luận một người không mắc bệnh X. Vì không có một xét nghiệm nào tuyệt đối đúng nên trên thực tế có thể xảy ra hai sai lầm sau:

– Xét nghiệm dương tính nhưng thực tế người xét nghiệm không mắc bệnh. Ta gọi đây là dương tính giả.

– Xét nghiệm âm tính nhưng thực tế người xét nghiệm lại mắc bệnh. Ta gọi đây là âm tính giả.

Ông M đi xét nghiệm bệnh hiểm nghèo X. Biết rằng, nếu một người mắc bệnh X thì với xác suất 0,95 xét nghiệm cho dương tính; nếu một người không bị bệnh X thì với xác suất 0,01 xét nghiệm cho dương tính.

Xét nghiệm của ông M cho kết quả dương tính. Ông M hoảng hốt khi nghĩ rằng mình có xác suất 0,95 mắc bệnh hiểm nghèo X.

Trong tình huống mở đầu Mục 2, gọi A là biến cố: “Ông M mắc bệnh hiểm nghèo X”; B là biến cố: “Xét nghiệm cho kết quả dương tính”.

a) Nêu các nội dung còn thiếu tương ứng với “(?)” để hoàn thành các câu sau đây:

Ÿ P(A | B) là xác suất để (?) với điều kiện (?);

Ÿ P(B | A) là xác suất để (?) với điều kiện (?).

b) 0,95 là P(A | B) hay P(B | A)? Có phải ông M có xác suất 0,95 mắc bệnh hiểm nghèo X không?

Lời giải:

a)

Ÿ P(A | B) là xác suất để ông M mắc bệnh hiểm nghèo X với điều kiện xét nghiệm cho kết quả dương tính.

Ÿ P(B | A) là xác suất để xét nghiệm cho kết quả dương tính với điều kiện ông M mắc bệnh hiểm nghèo X.

b) Nếu một người mắc bệnh X thì với xác suất 0,95 xét nghiệm cho dương tính, tức là xác suất để xét nghiệm cho kết quả dương tính với điều kiện người đó mắc bệnh hiểm nghèo X là 0,95. Do đó, P(B | A) = 0,95.

Vậy không phải ông M có xác suất 0,95 mắc bệnh hiểm nghèo X.

Đánh giá

0

0 đánh giá