Cho tam giác vuông OAB có cạnh OA = a nằm trên trục Ox và AOB = α (0 < α ≤ π/4)

485

Với giải Bài 4.19 trang 26 Toán 12 Tập 2 Kết nối tri thức chi tiết trong Bài 13: Ứng dụng hình học của tích phân giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 12. Mời các bạn đón xem:

Giải bài tập Toán 12 Bài 13: Ứng dụng hình học của tích phân

Bài 4.19 trang 26 Toán 12 Tập 2: Cho tam giác vuông OAB có cạnh OA = a nằm trên trục Ox và AOB^=α0<απ4. Gọi β là khối tròn xoay sinh ra khi quay miền tam giác OAB xung quanh trục Ox (H.4.31).

a) Tính thể tích V của β theo a và α.

b) Tìm α sao cho thể tích V lớn nhất

Lời giải:

Bài 4.19 trang 26 Toán 12 Tập 2 | Kết nối tri thức Giải Toán 12

a) Xét tam giác OAB vuông tại A, có AB = OA.tanα = a.tanα.

Khi quay miền tam giác OAB xung quanh trục Ox ta được khối nón có bán kính đáy r = AB = a.tanα và chiều cao h = OA = a.

Do đó V=13πr2h=13πa3tan2α

b) Có V'=13πa3.2tanα.1cos2α

Vì 0<απ4 => 0 < tanα ≤ 1 nên V' > 0. Do đó V là hàm số đồng biến trên 0;π4

Do đó max0;π4V=Vπ4=13πa3

Vậy α=π4 thì thể tích khối nón là lớn nhất.

Đánh giá

0

0 đánh giá