Khối chỏm cầu có bán kính R và chiều cao h (0 < h ≤ R) sinh ra khi quay hình phẳng giới hạn bởi cung tròn

305

Với giải Bài 4.18 trang 26 Toán 12 Tập 2 Kết nối tri thức chi tiết trong Bài 13: Ứng dụng hình học của tích phân giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 12. Mời các bạn đón xem:

Giải bài tập Toán 12 Bài 13: Ứng dụng hình học của tích phân

Bài 4.18 trang 26 Toán 12 Tập 2: Khối chỏm cầu có bán kính R và chiều cao h (0 < h ≤ R) sinh ra khi quay hình phẳng giới hạn bởi cung tròn có phương trình y=R2x2, trục hoành và hai đường thẳng x = R – h, x = R xung quanh trục Ox (H.4.30). Tính thể tích của khối chỏm cầu này.

Bài 4.18 trang 26 Toán 12 Tập 2 | Kết nối tri thức Giải Toán 12

Lời giải:

Thể tích cần tìm là:

V=πRhRR2x2dx=πR2xx33RhR

=πR3R33R2Rh+Rh33

=πR3R33R3+R2h+R33R2h+Rh2h33

=πRh2h33=πh2Rh3

Đánh giá

0

0 đánh giá