Với giải Bài 13 trang 67 Toán 12 Tập 2 Chân trời sáng tạo chi tiết trong Bài tập cuối chương 5 trang 66 giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 12. Mời các bạn đón xem:
Giải bài tập Toán 12 Bài tập cuối chương 5 trang 66
Bài 13 trang 67 Toán 12 Tập 2: Cho bốn điểm A(−2; 6; 3), B(1; 0; 6), C(0; 2; −1), D(1; 4; 0).
a) Viết phương trình mặt phẳng (BCD). Suy ra ABCD là một tứ diện.
b) Tính chiều cao AH của tứ diện ABCD.
c) Viết phương trình mặt phẳng (α) chứa AB và song song với CD.
Lời giải:
a) Ta có ,
Mặt phẳng (BCD) đi qua B(1; 0; 6) và nhận có phương trình là 8(x – 1) – 3y – 2(z – 6) = 0 ⇔ 8x – 3y – 2z + 4 = 0.
Thay tọa độ điểm A vào phương trình mặt phẳng (BCD) ta được:
8.(−2) – 3.6 – 2.3 + 4 = −36 ≠ 0.
Do đó A ∉ (BCD). Suy ra ABCD là một tứ diện.
b) Ta có .
c) Ta có và , .
Mặt phẳng (α) đi qua A(−2; 6; 3) và nhận có phương trình là (x + 2) – (z – 3) = 0 ⇔ x – z + 5 = 0.
Xem thêm lời giải bài tập Toán lớp 12 Chân trời sáng tạo hay, chi tiết khác:
Bài 1 trang 66 Toán 12 Tập 2: Cho mặt phẳng (P): x + 2y + 3z – 1 = 0. Vectơ nào dưới đây là một vectơ pháp tuyến của (P)?...
Bài 2 trang 66 Toán 12 Tập 2: Phương trình nào dưới đây là phương trình mặt phẳng (Oyz)?...
Bài 3 trang 66 Toán 12 Tập 2: Phương trình nào dưới đây là phương trình mặt phẳng đi qua điểm M(1; 2; −3) và có vectơ pháp tuyến ...
Bài 4 trang 66 Toán 12 Tập 2: Cho mặt phẳng (P): 3x + 4y + 2z + 4 = 0 và điểm A(1; −2; 3). Khoảng cách từ A đến (P) bằng...
Bài 5 trang 66 Toán 12 Tập 2: Cho ba mặt phẳng (α): x + y + 2z + 1 = 0, (β): x + y – z + 2 = 0 và (γ): x – y + 5 = 0. Trong các mệnh đề sau, mệnh đề nào sai?...
Bài 6 trang 66 Toán 12 Tập 2: Cho đường thẳng d: . Vectơ nào dưới đây là một vectơ chỉ phương của d?...
Bài 7 trang 66 Toán 12 Tập 2: Phương trình nào dưới đây là phương trình chính tắc của đường thẳng d: ...
Bài 8 trang 66 Toán 12 Tập 2: Cho đường thẳng d: . Trong các đường thẳng sau, đường thẳng nào vuông góc với d?...
Bài 9 trang 66 Toán 12 Tập 2: Cho hai mặt phẳng (P): 2x – y – z – 3 = 0 và (Q): x – z – 2 = 0. Góc giữa hai mặt phẳng (P) và (Q) bằng...
Bài 10 trang 67 Toán 12 Tập 2: Cho mặt cầu (S): (x + 1)2 + (y – 2)2 + (z – 1)2 = 9. Tọa độ tâm I và bán kính R của (S) là...
Bài 11 trang 67 Toán 12 Tập 2: Mặt cầu tâm I(−3; 0; 4) và đi qua điểm A(−3; 0; 0) có phương trình là...
Bài 12 trang 67 Toán 12 Tập 2: Cho bốn điểm A(1; 0; 0), B(0; 1; 0), C(0; 0; 1), D(−2; 1; −1)....
Bài 13 trang 67 Toán 12 Tập 2: Cho bốn điểm A(−2; 6; 3), B(1; 0; 6), C(0; 2; −1), D(1; 4; 0)....
Bài 14 trang 67 Toán 12 Tập 2: Phần mềm điều khiển máy in 3D cho biết đầu in phun của máy đang đặt tại điểm M(3; 4; 24) (đơn vị: cm). Tính khoảng cách từ đầu in đến khay đặt vật in có phương trình z – 4 = 0....
Bài 15 trang 67 Toán 12 Tập 2: Cho hai mặt phẳng (P): x – y – 6 = 0 và (Q). Biết rằng điểm H(2; −1; −2) là hình chiếu vuông góc của gốc tọa độ O(0; 0; 0) xuống mặt phẳng (Q). Tính góc giữa mặt phẳng (P) và mặt phẳng (Q)....
Bài 16 trang 67 Toán 12 Tập 2: Phần mềm của máy tiện kĩ thuật số CNC (Computer Numerical Control) đang biểu diễn một chi tiết máy như Hình 2....
Bài 17 trang 67 Toán 12 Tập 2: Cho hình hộp chữ nhật OABC.O'A'B'C', với O là gốc tọa độ, A(2; 0; 0), C(0; 6; 0), O'(0; 0; 4). Viết phương trình:...
Bài 18 trang 67 Toán 12 Tập 2: Cho ba điểm A(1; 0; 0), B(0; 2; 0) và C(0; 0; 3). Chứng minh rằng nếu điểm M(x; y; z) thỏa mãn MA2 = MB2 + MC2 thì M thuộc một mặt cầu (S). Tìm tâm và bán kính của (S)....
Xem thêm các bài giải bài tập Toán lớp 12 Chân trời sáng tạo hay, chi tiết khác:
Bài 3. Phương trình mặt cầu
Bài tập cuối chương V
Bài 1. Xác suất có điều kiện
Bài 2. Công thức xác suất toàn phần và công thức Bayes
Bài tập cuối chương VI
Bài 1. Tính giá trị gần dúng tích phân bằng máy tính cầm tay