Với giải Bài 6 trang 87 Toán 12 Tập 2 Cánh diều chi tiết trong Bài tập cuối chương 5 giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 12. Mời các bạn đón xem:
Giải bài tập Toán 12 Bài tập cuối chương 5
Bài 6 trang 87 Toán 12 Tập 2: Viết phương trình tổng quát của mặt phẳng (P) trong mỗi trường hợp sau:
a) (P) đi qua điểm M(– 3; 1; 4) và có một vectơ pháp tuyến là ;
b) (P) đi qua điểm N(2; – 1; 5) và có cặp vectơ chỉ phương là và ;
c) (P) đi qua điểm I(4; 0; – 7) và song song với mặt phẳng (Q): 2x + y – z – 3 = 0;
d) (P) đi qua điểm K(– 4; 9; 2) và vuông góc với đường thẳng
Lời giải:
a) Phương trình tổng quát của mặt phẳng (P) đi qua điểm M(– 3; 1; 4) và có một vectơ pháp tuyến là là:
2(x + 3) – 4(y – 1) + 1(z – 4) = 0 ⇔ 2x – 4y + z + 6 = 0.
b) Xét vectơ , tức là .
Khi đó, là một vectơ pháp tuyến của mặt phẳng (P).
Vậy phương trình tổng quát của mặt phẳng (P) là:
5(x – 2) + 5(y – (– 1)) – 5(z – 5) = 0 ⇔ x + y – z + 4 = 0.
c) Mặt phẳng (Q): 2x + y – z – 3 = 0 có vectơ pháp tuyến là .
Vì mặt phẳng (P) song song với mặt phẳng (Q) nên mặt phẳng (P) nhận làm một vectơ pháp tuyến. Vậy phương trình tổng quát của mặt phẳng (P) là:
2(x – 4) + 1(y – 0) – 1(z + 7) = 0 ⇔ 2x + y – z – 15 = 0.
d) Đường thẳng có vectơ chỉ phương là .
Vì ∆ ⊥ (P) nên mặt phẳng (P) nhận làm vectơ pháp tuyến. Vậy phương trình tổng quát của mặt phẳng (P) là:
2(x + 4) + 1(y – 9) + 5(z – 2) = 0 ⇔ 2x + y + 5z – 11 = 0.
Xem thêm lời giải bài tập Toán lớp 12 Cánh diều hay, chi tiết khác:
Bài 1 trang 87 Toán 12 Tập 2: Mặt phẳng (P): 3x – 4y + 5z – 6 = 0 có một vectơ pháp tuyến là:...
Bài 2 trang 87 Toán 12 Tập 2: Đường thẳng có một vectơ chỉ phương là:...
Bài 4 trang 87 Toán 12 Tập 2: Khoảng cách từ điểm M(a; b; c) đến mặt phẳng x – a – b – c = 0 là:...
Bài 5 trang 87 Toán 12 Tập 2: Cho bốn điểm A(0; 1; 3), B(– 1; 0; 5), C(2; 0; 2) và D(1; 1; – 2)....
Bài 7 trang 88 Toán 12 Tập 2: Viết phương trình của mặt cầu (S) trong mỗi trường hợp sau:...
Bài 11 trang 88 Toán 12 Tập 2: Tính góc giữa hai mặt phẳng (P1) và (P2), biết...
Xem thêm các bài giải bài tập Toán lớp 12 Cánh diều hay, chi tiết khác: